Wellbore instability is one of the major issues observed throughout the drilling operation. Various wellbore instability issues may occur during drilling operations, including tight holes, borehole collapse, stuck pipe, and shale caving. Rock failure criteria are important in geomechanical analysis since they predict shear and tensile failures. A suitable failure criterion must match the rock failure, which a caliper log can detect to estimate the optimal mud weight. Lack of data makes certain wells' caliper logs unavailable. This makes it difficult to validate the performance of each failure criterion. This paper proposes an approach for predicting the breakout zones in the Nasiriyah oil field using an artificial neural network. It also presents the optimal mud weight window for this field, which can be used to optimise the mud weights to minimise the wellbore instability issues. The results showed that an artificial neural network is a powerful tool for determining the breakout zones using the input data. The obtaining root mean square error and the determination coefficient were respectively 0.0082 and 0.959, by which the 1D MEM gave a high match between the predicted wellbore instabilities using the Mogi-failure criterion and the predicted breakout using the ANN model. Most borehole enlargements occur due to formation shear failures because of using low mud weights during drilling. The conclusion clarify the1.35 g/cc is the optimal mud weights for drilling new wells in this field of interest with fewer drilling issues.
This article proposes a new technique for determining the rate of contamination. First, a generative adversarial neural network (ANN) parallel processing technique is constructed and trained using real and secret images. Then, after the model is stabilized, the real image is passed to the generator. Finally, the generator creates an image that is visually similar to the secret image, thus achieving the same effect as the secret image transmission. Experimental results show that this technique has a good effect on the security of secret information transmission and increases the capacity of information hiding. The metric signal of noise, a structural similarity index measure, was used to determine the success of colour image-hiding t
... Show MoreAl2O3 and Al2O3–Al composite coatings were deposited on steel specimens using Oxy-acetylene gas thermal spray gun. Alumina was mixed with Aluminum in six groups of concentrations (0, 5, 10,12,15 and 20% ) Al2O3, Specimens were tested for corrosion using Potentiodynamic polarization technique. Further tests were conducted for the effect of temperature on polarization curve and the hardness tests for the coated specimens. At first, Modelling was carried out using MINITAB-19, least square method, as a 2nd degree nonlinear model, bad results were achieved because of the high nonlinearity. Better result w
The instant global trend towards developing tight reservoir is great; however, development can be very challenging due to stress and geomechanical properties effect in horizontal well placement and hydraulic fracturing design. Many parameters are known to be important to determine the suitable layer for locating horizontal well such as petrophysical and geomechanical properties. In the present study, permeability sensitivity to stress is also considered in the best layer selection for well placement. The permeability sensitivity to the stress of the layers was investigated using measurements of 27 core sample at different confining stress values. 1-D mechanical earth model (MEM) was built and converted to a 3-D full-field geomechanical mode
... Show MoreAsmari is the main productive reservoir in Abu Ghirab oilfield in the south-east part of Iraq. It has history production extends from 1976 up to now with several close periods. Recently, the reservoir suffers some problems in production, which are abstracted as water production rising with oil production declining in most wells. The water problem type of the field and wells is identified by using Chan's diagnostic plots (water oil ratio (WOR) and derivative water oil ratio (WOR') against time). The analytical results show that water problem is caused by the channeling due to high permeability zones, high water saturation zones, and faults or fracturing. The numerical approach is also used to study the water movement insi
... Show MoreAsmari is the main productive reservoir in Abu Ghirab oilfield in the south-east part of Iraq. It has history production extends from 1976 up to now with several close periods. Recently, the reservoir suffers some problems in production, which are abstracted as water production rising with oil production declining in most wells. The water problem type of the field and wells is identified by using Chan's diagnostic plots (water oil ratio (WOR) and derivative water oil ratio (WOR') against time). The analytical results show that water problem is caused by the channeling due to high permeability zones, high water saturation zones, and faults or fracturing. The numerical approach is also used to study the water movement inside the reser
... Show MoreTight oil reservoirs have been a concerned of the oil industry due to their substantial influence on oil production. Due to their poor permeability, numerous problems are encountered while producing from tight reservoirs. Petrophysical and geomechanical rock properties are essential for understanding and assessing the fracability of reservoirs, especially tight reservoirs, to enhance permeability. In this study, Saadi B reservoir in Halfaya Iraqi oil field is considered as the main tight reservoir. Petrophysical and geomechanical properties have been estimated using full-set well logs for a vertical well that penetrates Saadi reservoir and validated with support of diagnostic fracture injection test data employing standard equations
... Show MoreThe field of Optical Character Recognition (OCR) is the process of converting an image of text into a machine-readable text format. The classification of Arabic manuscripts in general is part of this field. In recent years, the processing of Arabian image databases by deep learning architectures has experienced a remarkable development. However, this remains insufficient to satisfy the enormous wealth of Arabic manuscripts. In this research, a deep learning architecture is used to address the issue of classifying Arabic letters written by hand. The method based on a convolutional neural network (CNN) architecture as a self-extractor and classifier. Considering the nature of the dataset images (binary images), the contours of the alphabet
... Show MoreIn this paper, the memorization capability of a multilayer interpolative neural network is exploited to estimate a mobile position based on three angles of arrival. The neural network is trained with ideal angles-position patterns distributed uniformly throughout the region. This approach is compared with two other analytical methods, the average-position method which relies on finding the average position of the vertices of the uncertainty triangular region and the optimal position method which relies on finding the nearest ideal angles-position pattern to the measured angles. Simulation results based on estimations of the mobile position of particles moving along a nonlinear path show that the interpolative neural network approach outperf
... Show More