<p>Combating the COVID-19 epidemic has emerged as one of the most promising healthcare the world's challenges have ever seen. COVID-19 cases must be accurately and quickly diagnosed to receive proper medical treatment and limit the pandemic. Imaging approaches for chest radiography have been proven in order to be more successful in detecting coronavirus than the (RT-PCR) approach. Transfer knowledge is more suited to categorize patterns in medical pictures since the number of available medical images is limited. This paper illustrates a convolutional neural network (CNN) and recurrent neural network (RNN) hybrid architecture for the diagnosis of COVID-19 from chest X-rays. The deep transfer methods used were VGG19, DenseNet121, InceptionV3, and Inception-ResNetV2. RNN was used to classify data after extracting complicated characteristics from them using CNN. The VGG19-RNN design had the greatest accuracy of all of the networks with 97.8% accuracy. Gradient-weighted the class activation mapping (Grad-CAM) method was then used to show the decision-making areas of pictures that are distinctive to each class. In comparison to other current systems, the system produced promising findings, and it may be confirmed as additional samples become available in the future. For medical personnel, the examination revealed an excellent alternative way of diagnosing COVID-19.</p>
Some new norms need to be adapted due to COVID-19 pandemic period where people need to wear masks, wash their hands frequently, maintain social distancing, and avoid going out unless necessary. Therefore, educational institutions were closed to minimize the spread of COVID-19. As a result of this, online education was adapted to substitute face-to-face learning. Therefore, this study aimed to assess the Malaysian university students’ adaptation to the new norms, knowledge and practices toward COVID-19, besides, their attitudes toward online learning. A convenient sampling technique was used to recruit 500 Malaysian university students from January to February 2021 through social media. For data collection, all students
... Show MoreTo assess the impact of COVID‐19 on oral hygiene (OH) awareness, attitude towards dental treatment, fear of infection and economic impact in the Middle East.
This survey was performed by online distribution of questionnaires in three countries in the Middle East (Jordan, Iraq and Egypt). The questionnaire consisted of five sections: the first section was aimed at collecting demographic data and the rest sections used to assess OH awareness, attitude towards dental treatment, degree of fear and economic impact of COVID‐19. The answers were either multiple choice, closed‐end (Yes or N
Background: Sex variations in coronary artery disease (CAD) are well documented. However, sex differences in coronary artery calcium (CAC) and its role in the detection of coronary artery stenosis remain controversial. Objective: To assess the impact of sex variation on coronary artery calcification and its efficacy in predicting coronary artery stenosis. Methods: This is a cross-sectional observational study including 230 consecutive patients with suspected CAD (120 men and 110 women) referred for coronary computed tomography angiography (CCTA). The study analyzed sex-based differences in the sensitivity and specificity of coronary artery calcification (CAC) for detecting moderate to severe stenosis across various coronary arteries
... Show MoreAbstract
Semiconductor-based gas sensors were prepared, that use n-type tin oxide (SnO2) and tin oxide: zinc oxide composite (SnO2)1-x(ZnO)x at different x ratios using pulse laser deposition at room temperature. The prepared thin films were examined to reach the optimum conditions for gas sensing applications, namely X-ray diffraction, Hall effect measurements, and direct current conductivity. It was found that the optimum crystallinity and maximum electron density, corresponding to the minimum charge carrier mobility, appeared at 10% ZnO ratio. This ratio appeared has the optimum NO2 gas sensitivity for 5% gas concentration at 300 °C working temperat
... Show MoreTin dioxide (SnO2) were mixed with (TiO2 and CuO) with concentration ratio (50, 60, 70, 80 and 90) wt% films deposited on single crystal Si and glass substrates at (523 K) by spray pyrolysis technique from aqueous solutions containing tin (II) dichloride Dihydrate (SnCl2, 2H2O), dehydrate copper chloride (CuCl2.2H2O) and Titanium(III) chloride (TiCl3) with molarities (0.2 M). The results of electrical properties and analysis of gas sensing properties of films are presented in this report. Hall measurement showed that films were n-type converted to p- type as titanium and copper oxide added at (50) % ratio. The D.C conductivity measurements referred that there are two mechanisms responsible about the conductivity, hence it possess two act
... Show MoreAbstract
For sparse system identification,recent suggested algorithms are
-norm Least Mean Square (
-LMS), Zero-Attracting LMS (ZA-LMS), Reweighted Zero-Attracting LMS (RZA-LMS), and p-norm LMS (p-LMS) algorithms, that have modified the cost function of the conventional LMS algorithm by adding a constraint of coefficients sparsity. And so, the proposed algorithms are named
-ZA-LMS,