This study is planned with the aim of constructing models that can be used to forecast trip production in the Al-Karada region in Baghdad city incorporating the socioeconomic features, through the use of various statistical approaches to the modeling of trip generation, such as artificial neural network (ANN) and multiple linear regression (MLR). The research region was split into 11 zones to accomplish the study aim. Forms were issued based on the needed sample size of 1,170. Only 1,050 forms with responses were received, giving a response rate of 89.74% for the research region. The collected data were processed using the ANN technique in MATLAB v20. The same database was utilized to develop the model of multiple linear regression (MLR) with the stepwise regression technique in the SPSS v25 software. The results indicate that the model of trip generation is related to family size and composition, gender, students’ number in the family, workers’ number in the family, and car ownership. The ANN prediction model is more accurate than the MLR predicted model: the average accuracy (AA) was 83.72% in the ANN model but only 72.46% in the MLR model.
Receipt date:06/23/2020 accepted date:7/15/2020 Publication date:12/31/2021
This work is licensed under a Creative Commons Attribution 4.0 International License
The executive authority differs from one country to another, as it differs from a federal state to another according to the nature of the applied political systems, so this research focused on federal states according to their political systems, then going into the details of the executive authority and its role In the federal states by referring to the four federal experiments
... Show MorePrediction of daily rainfall is important for flood forecasting, reservoir operation, and many other hydrological applications. The artificial intelligence (AI) algorithm is generally used for stochastic forecasting rainfall which is not capable to simulate unseen extreme rainfall events which become common due to climate change. A new model is developed in this study for prediction of daily rainfall for different lead times based on sea level pressure (SLP) which is physically related to rainfall on land and thus able to predict unseen rainfall events. Daily rainfall of east coast of Peninsular Malaysia (PM) was predicted using SLP data over the climate domain. Five advanced AI algorithms such as extreme learning machine (ELM), Bay
... Show MoreMany image processing and machine learning applications require sufficient image feature selection and representation. This can be achieved by imitating human ability to process visual information. One such ability is that human eyes are much more sensitive to changes in the intensity (luminance) than the color information. In this paper, we present how to exploit luminance information, organized in a pyramid structure, to transfer properties between two images. Two applications are presented to demonstrate the results of using luminance channel in the similarity metric of two images. These are image generation; where a target image is to be generated from a source one, and image colorization; where color information is to be browsed from o
... Show MoreThis project introduces a prospective material for photonic laser applications. The material is olive oil which is classified as organic compound, having a good nonlinear optical properties candidate to be used in photonic applications. A high purity sample of olive oil has been used. The theoretical calculation to generate third harmonic wave using olive oil has been determine using MATLAB program. THG (λ=355nm) intensity has been determined at two cases of sample thicknesses 1mm and 10mm. The minimum threshold incident intensity to obtain THG intensity are equal Iω=7530 mW/cm2 at L=1mm and Iω= 6220 mW/cm2 at L=10mm. The possibility of generation of third harmonic in olive oil inside
... Show MoreAdult of dipterous flies were collected monthly from exposed animals carcasses during the period from February 2006 to January 2007 in Baghdad city. The results obtained showed that flies could be collected all over the year with variation of their population density in different seasons. The majority of the collected species were abundant during Spring and late Autumn (at lowest numbers) . In this investigation, nineteen species confined to four families were collected; these families are: Calliphoridae, Muscidae, Sarcophagidae and Fanniidae. The species Musca domestica Linn .was the most abundant followed by Chrysomya megacephala ( Fabricius ) , while Pollenia sp . and Fannia sp . were the least abundant species.