The removal of commercial orange G dye from its aqueous solution by adsorption on tobacco leaves (TL) was studied in respect to different factor that affected the adsorption process. These factors including the tobacco leaves does, period of orange G adsorption, pH, and initial orange G dye concentration .Different types of isotherm models were used to describe the orange G dye adsorption onto the tobacco leaves. The experimental results were compared using Langmuir, and frundlich adsorption isotherm, the constants for these two isotherm models was determined. The results fitted frundlich model with value of correlation coefficient equal to (0.981). The capacity of adsorption for the orange G dye was carried out using various kinetic models like pseudo first order-kinetic, pseudo second order –kinetic, Elovich, and inter particle diffusion model, the rate constants for these models were evaluated. The data suggested that tobacco leaves are suitable sorbent for the orange - G dye removal from its solution.
The study involves removing of [Alizarin Red S (ARS) and Alizarin yellow R (AYR)] by using Iraqi Siliceous Rocks Powder (SRP). Adsorption isotherms were studied and the factors which influence it, such as temperature and salt effect. Adsorption isotherms of (ARS) were found to be comparable to Temkin equation. Adsorption isotherms of (AYR) were found to be comparable to Freundlich equation. The adsorption process on this surface was studied at different temperatures. The results showed that the adsorption of (ARS,AYR) on surface increased with increasing temperature (Endothermic process). According to the above results the thermodynamic functions (ΔH, ΔG, ΔS) were calculated. The adsorption quantity increasing for (ARS, AYR) with increas
... Show MoreNanofluids (dispersion of nanoparticles in a base fluid) have been suggested as promising agents in subsurface industries including enhanced oil recovery. Nanoparticles can easily pass through small pore throats in reservoirs formations; however, physicochemical interactions between nanoparticles and between nanoparticles and rocks can cause a significant retention of nanoparticles. This study investigated the transport, attach, and retention of silica nanoparticles in core plugs. The hydrophilic silica nanoparticles were injected into limestone core as nanofluid of different nanoparticles size (5 nm, and 20 nm), concentration (0.005 – 0.1 wt% SiO2), and base fluid salinity (0 – 3 wt% NaCl) at different temperatures (23, and 50 °C). D
... Show More