Preferred Language
Articles
/
kBYuCIcBVTCNdQwCpDC3
Behavior of High Strength Hybrid Reinforcement Concrete Beams
...Show More Authors

Six proposed simply supported high strength-steel fiber reinforced concrete (HS-SFRC) beams reinforced with FRP (fiber reinforced polymer) rebars were numerically tested by finite element method using ABAQUS software to investigate their behavior under the flexural failure. The beams were divided into two groups depending on their cross sectional shape. Group A consisted of four trapezoidal beams with dimensions of (height 200 mm, top width 250 mm, and bottom width 125 mm), while group B consisted of two rectangular beams with dimensions of (125 ×200) mm. All specimens have same total length of 1500 mm, and they were also considered to be made of same high strength concrete designed material with 1% volume fraction of steel fiber. Different types and ratios of FRP rebar were used to reinforce these test beams. The study’s principle variables were the amount and type of flexural reinforcement (glass FRP and basalt FRP) and beam cross-sectional shape (rectangular and trapezoidal). The load-deflection behavior and ultimate load capacity of the beams were studied and compared with one another under flexural test with symmetrical two-point loading. The results show that increasing the reinforcement ratio resulted in higher post cracking flexural stiffness, and higher residual strength, as well as caused an increase in the first cracking load and ultimate load capacity ranged from 3 to 16.9%, and 4.6 to 7.3% respectively. When the GFRP rebars replaced by BFRP, the overall beams flexural performance showed outstanding improvements. Moreover the results indicate that increasing the top width of the beam cross section led to a significant enhancement in the first crack load ranged from 16 to 32.4%, also a remarkable increases in the ultimate load capacity in the range of 35.5 to 35.8% were indicated in the trapezoidal beams compared to rectangular beams. However the results show that the deflections were similar and were approximately 1.07–1.54 mm for all test beams. It is worth noting that the general flexural behavior of all the test beams indicated a ductile behavior with a gradual reduction in strength and high residual strength pre to failure due to proposing steel fiber presence.

Scopus Clarivate Crossref
View Publication
Publication Date
Thu Dec 01 2011
Journal Name
Journal Of Engineering
Effect of Kerosene and Gasoline on Some Properties of High Performance Concrete
...Show More Authors

During the last quarter century, many changes have taken place in the tanks industry and also in the materials that used in its production، while concrete is the most suitable material where concrete tanks has the benefits of strength, long service life and cost effectiveness. So, it is necessary improvement the
conventional concrete in order to adapt the severe environment requirements and as a result high
performance concrete (HPC) was used. It is not fundamentally different from the concrete used in the past, although it usually contains fly ash, ground granulated blast furnace slag and silica fume, as well as
superplasticizer. So, the content of cementitious material is high and the water/cement ratio is low. In this
stu

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Thu Dec 13 2018
Journal Name
International Journal Of Engineering & Technology
Effect of Steel Fiber on Properties of High Performance No-Fine Concrete
...Show More Authors

No-fine concrete (NFC) is cellular concrete and it’s light weight concrete produced with the exclusion of sand from the concrete. This study includes the mechanical properties of lightweight reinforced by steel fiber, containing different proportions of steel fiber. This study was done using number of tests. These tests were density, compressive strength, flexural strength and absorption. These tests of the molds at different curing time. The results of tests that implication of fiber to No. fine concrete did not affect significantly on the compressive strength, While the flexural strength were gets better. Results explained that, the flexural strength of (1%) fiber No- fine concrete molds are four times that of the reference mold

... Show More
View Publication
Crossref (1)
Crossref
Publication Date
Sat Dec 04 2021
Journal Name
Transportation Research Record: Journal Of The Transportation Research Board
Gradation Effects on Strength and Deformation Properties of High-Quality Crushed Rock Base Materials
...Show More Authors

The importance of specifying proper aggregate grading for achieving satisfactory performance in pavement applications has long been recognized. To improve the specifications for superior performance, there is a need to understand how differences in aggregate gradations within the acceptable limits may affect unbound aggregate base behavior. The effects of gradation on strength, modulus, and deformation characteristics of high-quality crushed rock base materials are described here. Two crushed rock types commonly used in constructing heavy-duty granular base layers in the State of Victoria, Australia, with three different gradations each were used in this study. The gradations used represent the lower, medium, and upper gradation li

... Show More
View Publication
Scopus (4)
Crossref (3)
Scopus Clarivate Crossref
Publication Date
Wed Jan 31 2018
Journal Name
Engineering Journal
Residual Strength of Composite Unprotected Steel-Deck Floor Exposed to High Temperature (Fire Flame)
...Show More Authors

View Publication Preview PDF
Scopus (1)
Scopus Clarivate Crossref
Publication Date
Mon Sep 23 2019
Journal Name
Civil Engineering Journal
Energy Absorption Evaluation of CFRP-Strengthened Two-Spans Reinforced Concrete Beams under Pure Torsion
...Show More Authors

For more than a decade, externally bonded carbon fiber reinforced polymer (CFRP) composites successfully utilized in retrofitting reinforced concrete structural elements. The function of CFRP reinforcement in increasing the ductility of reinforced concrete (RC) beam is essential in such members. Flexural and shear behaviors, ductility, and confinement were the main studied properties that used the CFRP as a strengthening material. However, limited attention has been paid to investigate the energy absorption of torsion strengthening of concrete members, especially two-span concrete beams. Hence, the target of this work is to investigate the effectiveness of CFRP-strengthening technique with regard to energy absorption of two-span RC

... Show More
View Publication
Scopus (23)
Crossref (18)
Scopus Clarivate Crossref
Publication Date
Fri Jan 01 2021
Journal Name
Materials Today: Proceedings Journal
Improving torsional – Flexural resistance of concrete beams reinforced by hooked and straight steel fibers
...Show More Authors

Scopus (10)
Crossref (6)
Scopus Clarivate Crossref
Publication Date
Sun Jan 01 2023
Journal Name
Journal Of Engineering
The Response of Reinforced Concrete Composite Beams Reinforced with Pultruded GFRP to Repeated Loads
...Show More Authors

Publication Date
Sun Jan 01 2023
Journal Name
Journal Of Engineering
The Response of Reinforced Concrete Composite Beams Reinforced with Pultruded GFRP to Repeated Loads
...Show More Authors

This paper investigates the experimental response of composite reinforced concrete with GFRP and steel I-sections under limited cycles of repeated load. The practical work included testing four beams. A reference beam, two composite beams with pultruded GFRP I-sections, and a composite beam with a steel I-beam were subjected to repeated loading. The repeated loading test started by loading gradually up to a maximum of 75% of the ultimate static failure load for five loading and unloading cycles. After that, the specimens were reloaded gradually until failure. All test specimens were tested under a three-point load. Experimental results showed that the ductility index increased for the composite beams relative to the reference specim

... Show More
Crossref (8)
Crossref
Publication Date
Sun Jan 01 2023
Journal Name
Journal Of Engineering
The Response of Reinforced Concrete Composite Beams Reinforced with Pultruded GFRP to Repeated Loads
...Show More Authors

This paper investigates the experimental response of composite reinforced concrete with GFRP and steel I-sections under limited cycles of repeated load. The practical work included testing four beams. A reference beam, two composite beams with pultruded GFRP I-sections, and a composite beam with a steel I-beam were subjected to repeated loading. The repeated loading test started by loading gradually up to a maximum of 75% of the ultimate static failure load for five loading and unloading cycles. After that, the specimens were reloaded gradually until failure. All test specimens were tested under a three-point load. Experimental results showed that the ductility index increased for the composite beams relative to the refe

... Show More
View Publication Preview PDF
Crossref (8)
Crossref
Publication Date
Fri Nov 05 2021
Journal Name
Journal Of Architectural Environment & Structural Engineering Research
Strength & Conduct of Reinforced Concrete Corner Joint under Negative Moment Effect
...Show More Authors

The aim of our study is to reveal the effect of steel reinforcement details,tensile steel reinforcement ratio, compressed reinforcing steel ratio,reinforcing steel size, corner joint shape on the strength of reinforcedconcrete Fc' and delve into it for the most accurate details and concreteconnections about the behavior and resistance of the corner joint ofreinforced concrete, Depending on the available studies and sources inaddition to our study, we concluded that each of these effects had a clearrole in the behavior and resistance of the corner joint of reinforced concreteunder the influence of the negative moment and yield stress. A studyof the types of faults that can be reinforced angle joints obtains detailsand conditions of c

... Show More
View Publication
Crossref (14)
Crossref