In this thesis, we introduced some kinds of fibrewise topological spaces by using totally continuous function is called fibrewise totally topological spaces. We generalize some fundamental results from fibrewise topology into fibrewise totally topological spaces. We also introduce the concepts of fibrewise totally separation axioms, fibrewise totally compact and locally totally compact topological spaces. As well as fibrewise totally perfect topological spaces. We explain and discuss new notion of fibrewise topological spaces, namely fibrewise totally topological spaces. We, also introduce the concepts of fibrewise totally closed topological spaces, fibrewise totally open topological spaces, fibrewise locally sliceable and locally sectionable totally topological spaces. One the other hand, we studied fibrewise totally forms of the more essential separation axioms of ordinary topology namely fibrewise totally T_0 spaces, fibrewise totally T_1 spaces, fibrewise totally R_0 spaces, fibrewise totally Hausdorff spaces, fibrewise totally functionally Hausdorff spaces, fibrewise totally regular spaces, fibrewise totally completely regular spaces, fibrewise totally normal spaces and fibrewise totally functionally normal spaces. Too we add numerous outcomes about it. As well as, we introduced a notion fibrewise totally compact and fibrewise locally totally compact topological spaces. Finally, we introduced a notion fibrewise totally perfect topological spaces, fibrewise weakly totally closed topological spaces, fibrewise totally rigidlly sets, fibrewise totally almost perfect topological spaces and fibrewise T^*topological spaces. We study several theorm and characterizations converning these concepts.
The main idea of this research is to study fibrewise pairwise soft forms of the more important separation axioms of ordinary bitopology named fibrewise pairwise soft
In this paper, we proved coincidence points theorems for two pairs mappings which are defined on nonempty subset in metric spaces by using condition (1.1). As application, we established a unique common fixed points theorems for these mappings by using the concept weakly compatible (R-weakly commuting) between these mappings.
In this article, the partially ordered relation is constructed in geodesic spaces by betweeness property, A monotone sequence is generated in the domain of monotone inward mapping, a monotone inward contraction mapping is a monotone Caristi inward mapping is proved, the general fixed points for such mapping is discussed and A mutlivalued version of these results is also introduced.
In this paper we show that if ? Xi is monotonically T2-space then each Xi is monotonically T2-space, too. Moreover, we show that if ? Xi is monotonically normal space then each Xi is monotonically normal space, too. Among these results we give a new proof to show that the monotonically T2-space property and monotonically normal space property are hereditary property and topologically property and give an example of T2-space but not monotonically T2-space.
In the present paper, we have introduced some new definitions On D- compact topological group and D-L. compact topological group for the compactification in topological spaces and groups, we obtain some results related to D- compact topological group and D-L. compact topological group.
This paper presents a sight about the chemical structure deformation of poly (ethylene-co-vinyl acetate) (EVA) samples according to the change ratio of rate constant values. Spectroscopy kinetics fluorescence curves are fitted for two characteristic wavelength domains of fluorescent intensities. The short wavelengths (320-400 nm) domain show spectra overlapping, while at long wavelengths (400-800 nm) domain spectra are arranged in regular for each specific accelerated aging time. The ratio of kinetics rate constant at long wavelengths to kinetics rate constant of short wavelengths is the criterion of the degree chemical structure deformation. Molar extrin
... Show MoreThe purpose of this paper is to introduce and study the concepts of fuzzy generalized open sets, fuzzy generalized closed sets, generalized continuous fuzzy proper functions and prove results about these concepts.
In the present paper, discuss the concept of fuzzy topological spectrum of a bounded commutative KU-algebra and study some of the characteristics of this topology. Also, we show that the fuzzy topological spectrum of this structure is compact and T1 -space.
Relation on a set is a simple mathematical model to which many real-life data can be connected. A binary relation on a set can always be represented by a digraph. Topology on a set can be generated by binary relations on the set . In this direction, the study will consider different classical categories of topological spaces whose topology is defined by the binary relations adjacency and reachability on the vertex set of a directed graph. This paper analyses some properties of these topologies and studies the properties of closure and interior of the vertex set of subgraphs of a digraph. Further, some applications of topology generated by digraphs in the study of biological systems are cited.
The present study concentrates on the new generalizations of the Jordan curve theorem. In order to achieve our goal, new spaces namely PC-space and strong PC-space are defined and studied their properties. One of the main concepts that use to define the related classes of spaces is paracompact space. In addition, the property of being PC-space and strong PC-space is preserved by defining a new type of function so called para-perfect function.