Hierarchical temporal memory (HTM) is a biomimetic sequence memory algorithm that holds promise for invariant representations of spatial and spatio-temporal inputs. This article presents a comprehensive neuromemristive crossbar architecture for the spatial pooler (SP) and the sparse distributed representation classifier, which are fundamental to the algorithm. There are several unique features in the proposed architecture that tightly link with the HTM algorithm. A memristor that is suitable for emulating the HTM synapses is identified and a new Z-window function is proposed. The architecture exploits the concept of synthetic synapses to enable potential synapses in the HTM. The crossbar for the SP avoids dark spots caused by unutilized crossbar regions and supports rapid on-chip training within two clock cycles. This research also leverages plasticity mechanisms such as neurogenesis and homeostatic intrinsic plasticity to strengthen the robustness and performance of the SP. The proposed design is benchmarked for image recognition tasks using Modified National Institute of Standards and Technology (MNIST) and Yale faces datasets, and is evaluated using different metrics including entropy, sparseness, and noise robustness. Detailed power analysis at different stages of the SP operations is performed to demonstrate the suitability for mobile platforms.
The cheif aim of the present investigation is to develop Leslie Gower type three species food chain model with prey refuge. The intra-specific competition among the predators is considered in the proposed model. Besides the logistic growth rate for the prey species, Sokol Howell functional response for predation is chosen for our model formulation. The behaviour of the model system thoroughly analyses near the biologically significant equilibria. The linear stability analysis of the equilibria is carried out in order to examine the response of the system. The present model system experiences Hopf bifurcation depending on the choice of suitable model parameters. Extensive numerical simulation reveals the validity of the proposed model.
The influence of process speed (PS) and tillage depth (TD) , on growth of corn (Zea mays L) yield, for Maha cultivar, were tested at two ranges of PS of 2.483 and 4.011 km.hr-1, and three ranges of TD of 15,20 and 25cm. The experiments were conducted in a factorial experiment under complete randomized design with three replications. The results showed that the PS of 2.483 km.hr-1 was significantly better than the PS of 4.011km.hr-1 in all studied conditions. The , slippage ratio (SR) and the machine efficiency (ME), the physical soil characteristics represented by the soil density and porosity (SBD and TSP), and the plant characteristics represented the roots dry weight, PVI and the crop productivity (CP), except adjective of the fu
... Show MoreThis study was conducted in fruit production lathe house of the Department Of Horticulture And Landscape Gardening, in the station (B), College Of Agricultural Engineering Sciences, University Of Baghdad, Al-Jaadria for 8 months, began from 1/3/2019 to 1/9/2019 to investigate the responses of C35 Citrus rootstock to influence of foliar spraying of zinc and irrigation with smoking-water at 2 years old saplings. the study included two factors, first factor was three concentrations of Zinc Element Z0(0 mg.l-1), Z1(50 mg.l-1) and Z2(75 mg.l-1) that sprays at leave. The second factor was watering saplings with smoke-water in three concentrations S0(0 vol.vol-1), S1(0.1 vol.vol-1) and (0.2vol.vol-1), and their interaction. The experiment was fact
... Show MoreOne study whose importance has significantly grown in recent years is lip-reading, particularly with the widespread of using deep learning techniques. Lip reading is essential for speech recognition in noisy environments or for those with hearing impairments. It refers to recognizing spoken sentences using visual information acquired from lip movements. Also, the lip area, especially for males, suffers from several problems, such as the mouth area containing the mustache and beard, which may cover the lip area. This paper proposes an automatic lip-reading system to recognize and classify short English sentences spoken by speakers using deep learning networks. The input video extracts frames and each frame is passed to the Viola-Jone
... Show MoreThis paper aims to examine the effects of the gender differences on learners‟ motivation in learning the four skills of English as a foreign language as well as to identify the proper types of motivation for males and females via a qualitative semi-structured interview. The findings showed that all the males have extrinsic motivation in all four skills. On the other hand, females differ among themselves in their motivation. In conclusion, it is also the teachers‟ responsibility to guide and direct their learners to achieve better outcomes in learning the four EFL skills.
The paper aims to propose Teaching Learning based Optimization (TLBO) algorithm to solve 3-D packing problem in containers. The objective which can be presented in a mathematical model is optimizing the space usage in a container. Besides the interaction effect between students and teacher, this algorithm also observes the learning process between students in the classroom which does not need any control parameters. Thus, TLBO provides the teachers phase and students phase as its main updating process to find the best solution. More precisely, to validate the algorithm effectiveness, it was implemented in three sample cases. There was small data which had 5 size-types of items with 12 units, medium data which had 10 size-types of items w
... Show MoreWith the rapid development of smart devices, people's lives have become easier, especially for visually disabled or special-needs people. The new achievements in the fields of machine learning and deep learning let people identify and recognise the surrounding environment. In this study, the efficiency and high performance of deep learning architecture are used to build an image classification system in both indoor and outdoor environments. The proposed methodology starts with collecting two datasets (indoor and outdoor) from different separate datasets. In the second step, the collected dataset is split into training, validation, and test sets. The pre-trained GoogleNet and MobileNet-V2 models are trained using the indoor and outdoor se
... Show MoreThe current research aims to reveal the strength of education and the direction of the relationship between the formal thinking and learning methods of Kindergarten department students. To achieve this objective, the researcher developed a scale of formal thinking according to the theory of (Inhelder & Piaget 1958) consisting of (25) items in the form of declarative phrases derived from the analysis of formal thinking skills based on a professional situation that students are expected to interact with in a professional way. The research sample consisted of (100) female students selected randomly who were divided into four groups based on the academic stages, the results revealed that The level of formal thinking of the main sample is
... Show MoreSelf-driving automobiles are prominent in science and technology, which affect social and economic development. Deep learning (DL) is the most common area of study in artificial intelligence (AI). In recent years, deep learning-based solutions have been presented in the field of self-driving cars and have achieved outstanding results. Different studies investigated a variety of significant technologies for autonomous vehicles, including car navigation systems, path planning, environmental perception, as well as car control. End-to-end learning control directly converts sensory data into control commands in autonomous driving. This research aims to identify the most accurate pre-trained Deep Neural Network (DNN) for predicting the steerin
... Show More