Hierarchical temporal memory (HTM) is a biomimetic sequence memory algorithm that holds promise for invariant representations of spatial and spatio-temporal inputs. This article presents a comprehensive neuromemristive crossbar architecture for the spatial pooler (SP) and the sparse distributed representation classifier, which are fundamental to the algorithm. There are several unique features in the proposed architecture that tightly link with the HTM algorithm. A memristor that is suitable for emulating the HTM synapses is identified and a new Z-window function is proposed. The architecture exploits the concept of synthetic synapses to enable potential synapses in the HTM. The crossbar for the SP avoids dark spots caused by unutilized crossbar regions and supports rapid on-chip training within two clock cycles. This research also leverages plasticity mechanisms such as neurogenesis and homeostatic intrinsic plasticity to strengthen the robustness and performance of the SP. The proposed design is benchmarked for image recognition tasks using Modified National Institute of Standards and Technology (MNIST) and Yale faces datasets, and is evaluated using different metrics including entropy, sparseness, and noise robustness. Detailed power analysis at different stages of the SP operations is performed to demonstrate the suitability for mobile platforms.
Abstract
The aim of the present research is to identify the test wisdom and the preoccupation with learning and psychological tension among postgraduate students at the University of Samarra according to the variables of the department, gender, age, and employee or non-employee, and revealing the relationship between the test wisdom and the preoccupation with learning and psychological tension. The research sample consisted of (75) students randomly selected from postgraduate students at the college of Education. The researcher applies test –wisdom of (Mellman & Ebel) and measurement of preoccupation with learning prepared by (Al-zaabi 2013) also, the researcher used the scale of t
... Show MoreInvestigating the strength and the relationship between the Self-organized learning strategies and self-competence among talented students was the aim of this study. To do this, the researcher employed the correlation descriptive approach, whereby a sample of (120) male and female student were selected from various Iraqi cities for the academic year 2015-2016. the researcher setup two scales based on the previous studies: one to measure the Self-organized learning strategies which consist of (47) item and the other to measure the self-competence that composed of (50) item. Both of these scales were applied on the targeted sample to collect the required data
General Background: Deep image matting is a fundamental task in computer vision, enabling precise foreground extraction from complex backgrounds, with applications in augmented reality, computer graphics, and video processing. Specific Background: Despite advancements in deep learning-based methods, preserving fine details such as hair and transparency remains a challenge. Knowledge Gap: Existing approaches struggle with accuracy and efficiency, necessitating novel techniques to enhance matting precision. Aims: This study integrates deep learning with fusion techniques to improve alpha matte estimation, proposing a lightweight U-Net model incorporating color-space fusion and preprocessing. Results: Experiments using the AdobeComposition-1k
... Show Moreتتبلور فكرة البحث حول التوصل لنوع العلاقة التي تربط التعليم الالكتروني خلال جائحة كورونا برفع المهارات التكنولوجية للأساتذة والطلاب، وتبرز أهمية البحث في ان نجاح الوصول لهذه العلاقة يمكن الإفادة منها في تغيير منهجية تطوير المهارات التكنولوجية مستقبلا وذلك باعتماد الجوانب التطبيقية الفعلية بدلا من الدورات وورش العمل والتي قد لا تضاهي الطريقة العملية في رفع مستوى المهارات المختلفة سواء التدريسية او التكنو
... Show MoreThis paper proposes a better solution for EEG-based brain language signals classification, it is using machine learning and optimization algorithms. This project aims to replace the brain signal classification for language processing tasks by achieving the higher accuracy and speed process. Features extraction is performed using a modified Discrete Wavelet Transform (DWT) in this study which increases the capability of capturing signal characteristics appropriately by decomposing EEG signals into significant frequency components. A Gray Wolf Optimization (GWO) algorithm method is applied to improve the results and select the optimal features which achieves more accurate results by selecting impactful features with maximum relevance
... Show MoreRetinopathy of prematurity (ROP) can cause blindness in premature neonates. It is diagnosed when new blood vessels form abnormally in the retina. However, people at high risk of ROP might benefit significantly from early detection and treatment. Therefore, early diagnosis of ROP is vital in averting visual impairment. However, due to a lack of medical experience in detecting this condition, many people refuse treatment; this is especially troublesome given the rising cases of ROP. To deal with this problem, we trained three transfer learning models (VGG-19, ResNet-50, and EfficientNetB5) and a convolutional neural network (CNN) to identify the zones of ROP in preterm newborns. The dataset to train th
Diabetes is one of the increasing chronic diseases, affecting millions of people around the earth. Diabetes diagnosis, its prediction, proper cure, and management are compulsory. Machine learning-based prediction techniques for diabetes data analysis can help in the early detection and prediction of the disease and its consequences such as hypo/hyperglycemia. In this paper, we explored the diabetes dataset collected from the medical records of one thousand Iraqi patients. We applied three classifiers, the multilayer perceptron, the KNN and the Random Forest. We involved two experiments: the first experiment used all 12 features of the dataset. The Random Forest outperforms others with 98.8% accuracy. The second experiment used only five att
... Show MoreThe work in this paper involves the planning, design and implementation of a mobile learning system called Nahrain Mobile Learning System (NMLS). This system provides complete teaching resources, which can be accessed by the students, instructors and administrators through the mobile phones. It presents a viable alternative to Electronic learning. It focuses on the mobility and flexibility of the learning practice, and emphasizes the interaction between the learner and learning content. System users are categorized into three categories: administrators, instructors and students. Different learning activities can be carried out throughout the system, offering necessary communication tools to allow the users to communicate with each other
... Show More