The research aims to identify the educational plan for the private and public kindergartens. The researchers selected a sample consisted of (59) female teachers for the private kindergartens and (150) female teachers for the public kindergartens in the city of Baghdad. As for the research tool, the two researchers designed a questionnaire to measure the educational plan for the private and public kindergartens. The results revealed that private kindergartens have educational plans that contribute considerably to classroom interaction, the public kindergartens lack for educational plans. In light of the findings of the research, the researchers recommend the following: the need to set up a unified educational plan for the private and public kindergartens characterized by flexibility in some points, Holding seminars and conferences for both private and public kindergartens in order to increase the attention of the cognitive and social aspects of the kindergartens In light of the findings of the research, the researchers suggest the following; Conducting a similar study on samples in large numbers of kindergartens, Conducting a study dealing with the relationship of the educational plan with other variables.
The Present research aimed at identifying:
1- The level of environmental stress among preparatory students
2- The level of self-rebellion among preparatory students
3- The correlation between the two variables of research (environmental stress and self-rebellion) and the extent to which the independent variable contributes to the variable of the middle school students.
The current research has determined the students of the fifth stage of the preparatory stage and all the branches in the departments of education in Baghdad province the morning study for the academic
... Show MoreIn this study, a different design of passive air Solar Chimney(SC)was tested by installing it in the south wall of insulated test room in Baghdad city. The SC was designed from vertical and inclined parts connected serially together, the vertical SC (first part) has a single pass and Thermal Energy Storage Box Collector (TESB (refined paraffin wax as Phase Change Material(PCM)-Copper Foam Matrix(CFM))), while the inclined SC was designed in single pass, double passes and double pass with TESB (semi refined paraffin wax with copper foam matrix) with selective working angle ((30o, 45o and 60o). A computational model was employed and solved by Finite Volume Method (FVM) to simulate the air i
... Show MoreAdverse drug reactions (ADR) are important information for verifying the view of the patient on a particular drug. Regular user comments and reviews have been considered during the data collection process to extract ADR mentions, when the user reported a side effect after taking a specific medication. In the literature, most researchers focused on machine learning techniques to detect ADR. These methods train the classification model using annotated medical review data. Yet, there are still many challenging issues that face ADR extraction, especially the accuracy of detection. The main aim of this study is to propose LSA with ANN classifiers for ADR detection. The findings show the effectiveness of utilizing LSA with ANN in extracting AD
... Show MoreAbstract Bilastine, a second-generation antihistamine, is commonly prescribed for managing allergic rhinoconjunctivitis and urticaria due to its prolonged action. However, its therapeutic potential is constrained by poor water solubility and low oral bioavailability. This study aimed to enhance bilastine dissolution and patient compliance by formulating a nanosuspension-based orodispersible film (ODF). An anti-solvent precipitation method was employed to produce nanosuspension using different hydrophilic stabilizers (Soluplus®, Poloxamer 188, and PEG 6000). The influence of formulation parameters, such as the stabilizer ratio, the anti-solvent ratio, stirring speed, and the stabilizer type, on particle size and polydispersity index (PDI)
... Show MoreThis paper proposes a new structure of the hybrid neural controller based on the identification model for nonlinear systems. The goal of this work is to employ the structure of the Modified Elman Neural Network (MENN) model into the NARMA-L2 structure instead of Multi-Layer Perceptron (MLP) model in order to construct a new hybrid neural structure that can be used as an identifier model and a nonlinear controller for the SISO linear or nonlinear systems. Weight parameters of the hybrid neural structure with its serial-parallel configuration are adapted by using the Back propagation learning algorithm. The ability of the proposed hybrid neural structure for nonlinear system has achieved a fast learning with minimum number
... Show MoreBacterial meningitis is a leading cause of illness and death worldwide. It is crucial for clinical and public health care, as well as disease control, to identify the meningitis-causing agent promptly. Between June 2021-February 2022, a total of 100 cerebrospinal fluid (CSF) and blood samples were collected from suspected cases of meningitis admitted to Raparin Paediatric Teaching Hospital, Erbil city-Iraq. Cytochemical, cultural, and biochemical tests were conducted, and confirmed by molecular techniques. Bacterial culture findings were positive in 7% of CSF samples and just one positive among blood samples. The most common pathogens found by cultural characteristics and VITEK 2 Compact System were Staphylococcus sciuri in two
... Show MoreTraffic classification is referred to as the task of categorizing traffic flows into application-aware classes such as chats, streaming, VoIP, etc. Most systems of network traffic identification are based on features. These features may be static signatures, port numbers, statistical characteristics, and so on. Current methods of data flow classification are effective, they still lack new inventive approaches to meet the needs of vital points such as real-time traffic classification, low power consumption, ), Central Processing Unit (CPU) utilization, etc. Our novel Fast Deep Packet Header Inspection (FDPHI) traffic classification proposal employs 1 Dimension Convolution Neural Network (1D-CNN) to automatically learn more representational c
... Show More