This study investigated three aims for the extent of effectiveness of the two systems in educational development of educators. To achieve this, statistical analysis was performed between the two groups that consisted of (26) participants of the electronic teaching method and (38) participants who underwent teaching by the conventional electronic lecture. The results indicated the effectiveness of the “electronic teaching method” and the “electronic lecture method” for learning of the participants in educational development. Also, it indicated the level of equivalence from the aspect of effectiveness of the two methods and at a confidence level of (0.05). This study reached several conclusions, recommendations, and suggestions, some of the most prominent of which include the effectiveness of the two learning methods, the two electronic teaching methods in educational development, since they both depended on the technology system in learning and “data show” teaching at the development site. It seemed that it permitted the chance for interaction between the learners, teachers, and the electronically presented educational material. The most prominent recommendation is to examine the ability of depending recent technology at site education and distance education. Of the suggestions is the application of a program for the search of a group of learners in educational materials in the different academic fields and in universities.
The convolutional neural networks (CNN) are among the most utilized neural networks in various applications, including deep learning. In recent years, the continuing extension of CNN into increasingly complicated domains has made its training process more difficult. Thus, researchers adopted optimized hybrid algorithms to address this problem. In this work, a novel chaotic black hole algorithm-based approach was created for the training of CNN to optimize its performance via avoidance of entrapment in the local minima. The logistic chaotic map was used to initialize the population instead of using the uniform distribution. The proposed training algorithm was developed based on a specific benchmark problem for optical character recog
... Show MoreBackground: Immediate implant placement in the maxillary anterior region was challenging, especially with the jumping gap and limited primary implant stability. Objective: To assess the autogenous dentin graft biomaterial's ability to improve the esthetic outcomes of an immediately inserted implant. Methods: Twenty patients with non-restorable retained roots in the maxillary non-molar region surrounded by natural sound teeth were included in this study after a complete clinical and radiological examination, including patient health and clinical fitness for the immediate dental implant procedure. A single dental implant was inserted for each patient, and the resulting jump distance was filled with the mineralized dentin graft and co
... Show MoreThe developed financial system is essential for increasing economic growth and poverty reduction in the world. The financial development helps in poverty reduction indirectly via intermediate channel which is the economic growth. The financial development enhancing economic development through mobilization of savings and channel them to the most efficient uses with higher economic and social returns. In addition, the economic growth reduces the poverty through two channels. The first is direct by increasing the introduction factors held by poor and improve the situations into the sectors and areas where the poor live. The second is indirect through redistribution the realized incomes from the economic growth as well as the realiz
... Show MoreObjective: The study aimed to screen the prepubertal children for idiopathic scoliosis at earlier stages, and find
out the relationship between idiopathic scoliosis and demographic data such as age, sex, body mass index,
heavy backpacks, and heart & lung diseases.
Methodology: A descriptive study was conducted on screening program for prepubertal children in primary
schools at Baghdad city, starting from 24th of February to the end of October 2010. Non- probability
(purposive) sample of 510 prepubertal children were chosen from primary schools of both sides of Al-Karkh
and Al-Russafa sectors. Data was collected through a specially constructed questionnaire format include (24)
items multiple choice questions, and
During COVID-19, wearing a mask was globally mandated in various workplaces, departments, and offices. New deep learning convolutional neural network (CNN) based classifications were proposed to increase the validation accuracy of face mask detection. This work introduces a face mask model that is able to recognize whether a person is wearing mask or not. The proposed model has two stages to detect and recognize the face mask; at the first stage, the Haar cascade detector is used to detect the face, while at the second stage, the proposed CNN model is used as a classification model that is built from scratch. The experiment was applied on masked faces (MAFA) dataset with images of 160x160 pixels size and RGB color. The model achieve
... Show More