The current study aims to examine the level of problems faced by university students in distance learning, in addition to identify the differences in these problems in terms of the availability of internet services, gender, college, GPA, interactions, academic cohort, and family economic status. The study sample consisted of (3172) students (57.3% females). The researchers developed a questionnaire with (32) items to measure distance learning problems in four areas: Psychological (9 items), academic (10 items), technological (7 items), and study environment (6 items). The responses are scored on a (5) point Likert Scale ranging from 1 (strongly disagree) to 5 (strongly agree). Means, standard deviations, and Multivariate Analysis of Variance (MANOVA) were used to analyze the data. The findings showed that students faced high levels of psychological and academic problems and medium levels of technological and study environmental problems. The findings also indicated statistically significant differences in the levels of all problems based on the availability of internet services. In addition, the sample in scientific colleges manifested higher levels of academic problems, and females showed higher levels of study environmental problems. Statistically significant differences also appeared in all types of problems based on study cohort and family economic status.
Image classification is the process of finding common features in images from various classes and applying them to categorize and label them. The main problem of the image classification process is the abundance of images, the high complexity of the data, and the shortage of labeled data, presenting the key obstacles in image classification. The cornerstone of image classification is evaluating the convolutional features retrieved from deep learning models and training them with machine learning classifiers. This study proposes a new approach of “hybrid learning” by combining deep learning with machine learning for image classification based on convolutional feature extraction using the VGG-16 deep learning model and seven class
... Show MoreProducts’ quality inspection is an important stage in every production route, in which the quality of the produced goods is estimated and compared with the desired specifications. With traditional inspection, the process rely on manual methods that generates various costs and large time consumption. On the contrary, today’s inspection systems that use modern techniques like computer vision, are more accurate and efficient. However, the amount of work needed to build a computer vision system based on classic techniques is relatively large, due to the issue of manually selecting and extracting features from digital images, which also produces labor costs for the system engineers. In this research, we pr
... Show MoreMachine learning has a significant advantage for many difficulties in the oil and gas industry, especially when it comes to resolving complex challenges in reservoir characterization. Permeability is one of the most difficult petrophysical parameters to predict using conventional logging techniques. Clarifications of the work flow methodology are presented alongside comprehensive models in this study. The purpose of this study is to provide a more robust technique for predicting permeability; previous studies on the Bazirgan field have attempted to do so, but their estimates have been vague, and the methods they give are obsolete and do not make any concessions to the real or rigid in order to solve the permeability computation. To
... Show MoreA Wearable Robotic Knee (WRK) is a mobile device designed to assist disabled individuals in moving freely in undefined environments without external support. An advanced controller is required to track the output trajectory of a WRK device in order to resolve uncertainties that are caused by modeling errors and external disturbances. During the performance of a task, disturbances are caused by changes in the external load and dynamic work conditions, such as by holding weights while performing the task. The aim of this study is to address these issues and enhance the performance of the output trajectory tracking goal using an adaptive robust controller based on the Radial Basis Function (RBF) Neural Network (NN) system and Hamilton
... Show MoreEarly detection of brain tumors is critical for enhancing treatment options and extending patient survival. Magnetic resonance imaging (MRI) scanning gives more detailed information, such as greater contrast and clarity than any other scanning method. Manually dividing brain tumors from many MRI images collected in clinical practice for cancer diagnosis is a tough and time-consuming task. Tumors and MRI scans of the brain can be discovered using algorithms and machine learning technologies, making the process easier for doctors because MRI images can appear healthy when the person may have a tumor or be malignant. Recently, deep learning techniques based on deep convolutional neural networks have been used to analyze med
... Show MoreThis study aims at examining the effectiveness of using the narrative approach in teaching the Interpretation of the Qur'an course in the development of conceptual comprehension among first-grade middle school female students. To achieve the objective of this study, a quantitative quasi-experimental design has been used. The sample consisted of first-grade middle school female students at "the third middle school" in Buraidah city, as this school suits the objective of the study. A test of conceptual understanding has been built by the researchers according to a list of conceptual understating skills at a significance level of α ≤ 0.05. Results have shown that there are statistically significant differences at the level (α ≤ 0,05)
... Show MoreThis study aims to find out the effectiveness of a cognitive-behavioral counseling program in enhancing self-management in reducing the academic procrastination of tenth-grade male students. The sample consisted of (26) male students divided into an experimental group of (13) students and a control group of (13) students. Two scales of self-management and academic procrastination were used, prepared by the researcher. The counseling program was prepared by the researcher. The results showed the program's effectiveness in enhancing self-management and reducing academic procrastination in the posttest, as it showed the continuation of this enhancement in self-management and the increase in the reduction of procrastination in the follow-up
... Show MoreEmpirical and statistical methodologies have been established to acquire accurate permeability identification and reservoir characterization, based on the rock type and reservoir performance. The identification of rock facies is usually done by either using core analysis to visually interpret lithofacies or indirectly based on well-log data. The use of well-log data for traditional facies prediction is characterized by uncertainties and can be time-consuming, particularly when working with large datasets. Thus, Machine Learning can be used to predict patterns more efficiently when applied to large data. Taking into account the electrofacies distribution, this work was conducted to predict permeability for the four wells, FH1, FH2, F
... Show MoreThe world faced many communication challenges in 2020 after the Covid-19 pandemic, the most important of which was the continuation of schooling. Therefore, the research aimed to analyze the current reality of the studied universities in terms of strengths and weaknesses and measure the implementing level of quality requirements of e-learning. This research studies the impact of knowledge sharing in its dimensions (behavior, organizational culture, work teams, and technology) on the e-learning quality and its dimensions (e-learning management, educational content, evaluation ,and evaluation). After conducting the survey, there was a difference in the universities’ application of the quality requirements of e-learning, as the study
... Show More