The current study aims to examine the level of problems faced by university students in distance learning, in addition to identify the differences in these problems in terms of the availability of internet services, gender, college, GPA, interactions, academic cohort, and family economic status. The study sample consisted of (3172) students (57.3% females). The researchers developed a questionnaire with (32) items to measure distance learning problems in four areas: Psychological (9 items), academic (10 items), technological (7 items), and study environment (6 items). The responses are scored on a (5) point Likert Scale ranging from 1 (strongly disagree) to 5 (strongly agree). Means, standard deviations, and Multivariate Analysis of Variance (MANOVA) were used to analyze the data. The findings showed that students faced high levels of psychological and academic problems and medium levels of technological and study environmental problems. The findings also indicated statistically significant differences in the levels of all problems based on the availability of internet services. In addition, the sample in scientific colleges manifested higher levels of academic problems, and females showed higher levels of study environmental problems. Statistically significant differences also appeared in all types of problems based on study cohort and family economic status.
The study aimed to identify the impact of the use of systemic approach in the collection of geographical material and cognitive motivation when fifth grade students of literary, experimental design researcher adopted a partial seizures, and telemetric to two unequal one experimental and the other officer.
The sample consisted of fifth grade literary students from secondary (inherent) for Boys in Baghdad (the Republic of Iraq. (By Mjootain, and the number of students of each group (30 students). And has rewarded the two groups, in the variables (chronological age, average scores half-year, degree IQ),
Promising researcher himself requirements of research to determine the scientific material and teaching plans and the formulation of
The study aimed at recognizing the availability of the cultural intelligence dimensions in social studies book at the high school in the kingdom of Saudi Arabia (curricula system- joint program). The study used the descriptive approach and content analysis method. As tools of the study, the study adopted a list of cultural list of indicators and dimensions that suits the secondary stage social curricula. It further adopted a content analysis form designed to analyze the social studies book in the secondary school in the kingdom of Saudi Arabia. The study has reached several results, the most significant results were: There is a difference in including the cultural intelligence dimensions in social studies book at high school in the kingd
... Show MoreThis research has targeted four aims related to the social morals of university students in terms of psychological aspect and Islamic field; they had been achieved as follow:
- It had been sought in the social morals concept in Islam in relation to the Holy Quran and Hadith sources.
- It had been built standard for the social morals of the university students through analyzing Hadith and adopting focus ratio to identify the number of ten social moral items; and they have been subjected to the statistical analysis then finding the psychometric indicators to identify their truth and validity.
- To identify the ratios of social morals at a sample of Isla
Deep Learning Techniques For Skull Stripping of Brain MR Images
HM Al-Dabbas, RA Azeez, AE Ali, IRAQI JOURNAL OF COMPUTERS, COMMUNICATIONS, CONTROL AND SYSTEMS ENGINEERING, 2023
One of the diseases on a global scale that causes the main reasons of death is lung cancer. It is considered one of the most lethal diseases in life. Early detection and diagnosis are essential for lung cancer and will provide effective therapy and achieve better outcomes for patients; in recent years, algorithms of Deep Learning have demonstrated crucial promise for their use in medical imaging analysis, especially in lung cancer identification. This paper includes a comparison between a number of different Deep Learning techniques-based models using Computed Tomograph image datasets with traditional Convolution Neural Networks and SequeezeNet models using X-ray data for the automated diagnosis of lung cancer. Although the simple details p
... Show MoreThe convolutional neural networks (CNN) are among the most utilized neural networks in various applications, including deep learning. In recent years, the continuing extension of CNN into increasingly complicated domains has made its training process more difficult. Thus, researchers adopted optimized hybrid algorithms to address this problem. In this work, a novel chaotic black hole algorithm-based approach was created for the training of CNN to optimize its performance via avoidance of entrapment in the local minima. The logistic chaotic map was used to initialize the population instead of using the uniform distribution. The proposed training algorithm was developed based on a specific benchmark problem for optical character recog
... Show More