The current study aims to examine the level of problems faced by university students in distance learning, in addition to identify the differences in these problems in terms of the availability of internet services, gender, college, GPA, interactions, academic cohort, and family economic status. The study sample consisted of (3172) students (57.3% females). The researchers developed a questionnaire with (32) items to measure distance learning problems in four areas: Psychological (9 items), academic (10 items), technological (7 items), and study environment (6 items). The responses are scored on a (5) point Likert Scale ranging from 1 (strongly disagree) to 5 (strongly agree). Means, standard deviations, and Multivariate Analysis of Variance (MANOVA) were used to analyze the data. The findings showed that students faced high levels of psychological and academic problems and medium levels of technological and study environmental problems. The findings also indicated statistically significant differences in the levels of all problems based on the availability of internet services. In addition, the sample in scientific colleges manifested higher levels of academic problems, and females showed higher levels of study environmental problems. Statistically significant differences also appeared in all types of problems based on study cohort and family economic status.
The study seeks to investigate the effect of Dunn Dunn learning style model on students’ achievement. Besides, the way of developing students’ deductive thinking by testing the null hypothesis: there is no significant difference between experimental group who takes Dunn Dunn model as style in studying geography and control group that follows a traditional method in studying geography at the level of (0,05). Additionally, there is no significant difference between experimental group who takes Dunn Dunn model as style in studying geography and control group that follows a traditional method in studying geography at the level of (0,05) on testing developing deductive thinking skills. The researcher adopted a quasi-experimental posttest
... Show MoreThe present study discusses the problem based learning in Iraqi classroom. This method aims to involve all learners in collaborative activities and it is learner-centered method. To fulfill the aims and verify the hypothesis which reads as follow” It is hypothesized that there is no statistically significant differences between the achievements of Experimental group and control group”. Thirty learners are selected to be the sample of present study.Mann-Whitney Test for two independent samples is used to analysis the results. The analysis shows that experimental group’s members who are taught according to problem based learning gets higher scores than the control group’s members who are taught according to traditional method. This
... Show Moreتعدُّ القارة الإفريقية ذات موقع جيوسياسي إذ إنه يربط دول العالم بعضها ببعض، وأنّها تحتوي على ثلث الاحتياط النفطي المؤكد العالمي واليوريانيوم والمعادن الأخرى مما جعلها ذات أهمية للدول العظمى، وأنّها غير مستقرة سياسياً إذ تكثر بها النزعات والهجمات الإرهابية مما جعل الدول العظمى تتسابق لوقف المشاكل، ومن أهم هذه الدول العظمى هي فرنسا التي تحتفظ بنفوذها السبق أي الاستعماري في القارة وأنّها لا تتنازل عنه لأي دو
... Show Moreالتطورات السياسية في افريقيا جنوب الصحراء بعد الحرب الباردة
Background: The efficacy of educational strategies is crucial for nursing students to competently perform pediatric procedures like nasogastric tube insertion. Specific Background: This study evaluates the effectiveness of simulation, blended, and self-directed learning strategies in enhancing these skills among nursing students. Knowledge Gap: Previous research lacks a comprehensive comparison of these strategies' impacts on skill development in pediatric nursing contexts. Aims: The study aims to assess the effectiveness of different educational strategies on nursing students' ability to perform pediatric nasogastric tube insertions. Methods: A pre-experimental design was employed at the College of Nursing, University of Baghdad, i
... Show MoreAnalyzing sentiment and emotions in Arabic texts on social networking sites has gained wide interest from researchers. It has been an active research topic in recent years due to its importance in analyzing reviewers' opinions. The Iraqi dialect is one of the Arabic dialects used in social networking sites, characterized by its complexity and, therefore, the difficulty of analyzing sentiment. This work presents a hybrid deep learning model consisting of a Convolution Neural Network (CNN) and the Gated Recurrent Units (GRU) to analyze sentiment and emotions in Iraqi texts. Three Iraqi datasets (Iraqi Arab Emotions Data Set (IAEDS), Annotated Corpus of Mesopotamian-Iraqi Dialect (ACMID), and Iraqi Arabic Dataset (IAD)) col
... Show MoreMonaural source separation is a challenging issue due to the fact that there is only a single channel available; however, there is an unlimited range of possible solutions. In this paper, a monaural source separation model based hybrid deep learning model, which consists of convolution neural network (CNN), dense neural network (DNN) and recurrent neural network (RNN), will be presented. A trial and error method will be used to optimize the number of layers in the proposed model. Moreover, the effects of the learning rate, optimization algorithms, and the number of epochs on the separation performance will be explored. Our model was evaluated using the MIR-1K dataset for singing voice separation. Moreover, the proposed approach achi
... Show MoreThe proliferation of many editing programs based on artificial intelligence techniques has contributed to the emergence of deepfake technology. Deepfakes are committed to fabricating and falsifying facts by making a person do actions or say words that he never did or said. So that developing an algorithm for deepfakes detection is very important to discriminate real from fake media. Convolutional neural networks (CNNs) are among the most complex classifiers, but choosing the nature of the data fed to these networks is extremely important. For this reason, we capture fine texture details of input data frames using 16 Gabor filters indifferent directions and then feed them to a binary CNN classifier instead of using the red-green-blue
... Show More