Preferred Language
Articles
/
jperc-1377
Vocabulary Learning Strategies Employed by English as Foreign Language Students at NBU University
...Show More Authors

ABSTRACT

Learning vocabulary is a challenging task for female English as a foreign language (EFL) students. Thus, improving students’ knowledge of vocabulary is critical if they are to make progress in learning a new language. The current study aimed at exploring the vocabulary learning strategies used by EFL students at Northern Border University (NBU). It also aimed to identify the mechanisms applied by EFL students at NBU University to learn vocabulary. It also aimed at evaluating the approaches adopted by EFL female students at Northern Border University (NBU) to learn a language. The study adopted the descriptive-analytical method. Two research instruments were developed to collect data namely, a survey questionnaire on vocabulary learning strategies was used to collect data from the students on the strategies that they used to learn vocabulary. Also, the researcher used a semi-structured interview to assess and collect qualitative data about the effectiveness of the vocabulary learning strategies used by EFL students at NBU University. Results of this study revealed that the students preferred the cognitively demanding techniques over the techniques currently in use, along with the memory strategies. The study also showed that social strategies are rarely implemented in teaching vocabulary these days.

View Publication Preview PDF
Quick Preview PDF
Publication Date
Thu Jun 01 2023
Journal Name
International Journal Of Electrical And Computer Engineering (ijece)
An optimized deep learning model for optical character recognition applications
...Show More Authors

The convolutional neural networks (CNN) are among the most utilized neural networks in various applications, including deep learning. In recent years, the continuing extension of CNN into increasingly complicated domains has made its training process more difficult. Thus, researchers adopted optimized hybrid algorithms to address this problem. In this work, a novel chaotic black hole algorithm-based approach was created for the training of CNN to optimize its performance via avoidance of entrapment in the local minima. The logistic chaotic map was used to initialize the population instead of using the uniform distribution. The proposed training algorithm was developed based on a specific benchmark problem for optical character recog

... Show More
View Publication
Scopus (2)
Scopus Crossref
Publication Date
Sat Feb 09 2019
Journal Name
Journal Of The College Of Education For Women
A Study of the Problems of Learning and Translating Idioms
...Show More Authors

Idioms are a very important part of the English language: you are told that if you want to go far (succeed) you should pull your socks up (make a serious effort to improve your behaviour, the quality of your work, etc.) and use your grey matter (brain).1 Learning and translating idioms have always been very difficult for foreign language learners. The present paper explores some of the reasons why English idiomatic expressions are difficult to learn and translate. It is not the aim of this paper to attempt a comprehensive survey of the vast amount of material that has appeared on idioms in Adams and Kuder (1984), Alexander (1984), Dixon (1983), Kirkpatrick (2001), Langlotz (2006), McCarthy and O'Dell (2002), and Wray (2002), among others

... Show More
View Publication Preview PDF
Publication Date
Sat Nov 02 2019
Journal Name
Advances In Intelligent Systems And Computing
Modified Opposition Based Learning to Improve Harmony Search Variants Exploration
...Show More Authors

View Publication
Scopus (9)
Crossref (6)
Scopus Clarivate Crossref
Publication Date
Sun Jan 01 2023
Journal Name
Computers, Materials & Continua
Hybrid Deep Learning Enabled Load Prediction for Energy Storage Systems
...Show More Authors

View Publication
Scopus (17)
Crossref (30)
Scopus Clarivate Crossref
Publication Date
Thu Jun 01 2023
Journal Name
Ifip Advances In Information And Communication Technology
Rapid Thrombogenesis Prediction in Covid-19 Patients Using Machine Learning
...Show More Authors

Machine Learning (ML) algorithms are increasingly being utilized in the medical field to manage and diagnose diseases, leading to improved patient treatment and disease management. Several recent studies have found that Covid-19 patients have a higher incidence of blood clots, and understanding the pathological pathways that lead to blood clot formation (thrombogenesis) is critical. Current methods of reporting thrombogenesis-related fluid dynamic metrics for patient-specific anatomies are based on computational fluid dynamics (CFD) analysis, which can take weeks to months for a single patient. In this paper, we propose a ML-based method for rapid thrombogenesis prediction in the carotid artery of Covid-19 patients. Our proposed system aims

... Show More
View Publication
Scopus (3)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Fri Dec 03 2021
Journal Name
International Journal Of Recent Contributions From Engineering, Science & It
The Influence E-Learning Platforms of Undergraduate Education in Iraq
...Show More Authors

Crossref
Publication Date
Wed Feb 01 2012
Journal Name
Engineering And Technology Journal
Determinants of E-Learning Implementation Success In The Iraqi MoHE
...Show More Authors

View Publication
Crossref (11)
Crossref
Publication Date
Mon Jan 01 2024
Journal Name
Lecture Notes In Networks And Systems
Using Machine Learning to Control Congestion in SDN: A Review
...Show More Authors

View Publication
Scopus (1)
Crossref (2)
Scopus Crossref
Publication Date
Sat Jan 19 2019
Journal Name
Artificial Intelligence Review
Survey on supervised machine learning techniques for automatic text classification
...Show More Authors

View Publication
Scopus (329)
Crossref (295)
Scopus Clarivate Crossref
Publication Date
Tue May 07 2019
Journal Name
Acm Journal On Emerging Technologies In Computing Systems
Neuromemrisitive Architecture of HTM with On-Device Learning and Neurogenesis
...Show More Authors

Hierarchical temporal memory (HTM) is a biomimetic sequence memory algorithm that holds promise for invariant representations of spatial and spatio-temporal inputs. This article presents a comprehensive neuromemristive crossbar architecture for the spatial pooler (SP) and the sparse distributed representation classifier, which are fundamental to the algorithm. There are several unique features in the proposed architecture that tightly link with the HTM algorithm. A memristor that is suitable for emulating the HTM synapses is identified and a new Z-window function is proposed. The architecture exploits the concept of synthetic synapses to enable potential synapses in the HTM. The crossbar for the SP avoids dark spots caused by unutil

... Show More
View Publication
Scopus (15)
Crossref (15)
Scopus Clarivate Crossref