Preferred Language
Articles
/
joe-964
Effect of Maximum Size of Aggregate on the Behavior of Reinforced Concrete Beams Analyzed using Meso Scale Modeling
...Show More Authors

In this study, simply supported reinforced concrete (RC) beams were analyzed using the Extended Finite Element Method (XFEM). This is a powerful method that is used for the treatment of discontinuities resulting from the fracture process and crack propagation in concrete. The mesoscale is used in modeling concrete as a two-phasic material of coarse aggregate and cement mortar. Air voids in the cement paste will also be modeled. The coarse aggregate used in the casting of these beams is a rounded aggregate consisting of different maximum sizes. The maximum size is 25 mm in the first model, and in the second model, the maximum size is 20 mm. The compressive strength used in these beams is equal to 26 MPa.

The subjects of this study are two RC beams subjected to a two-point loading designed to fail due to flexure. The RC beams under loading were studied in the laboratory as well as numerically. ABAQUS program was used for modeling and analyzing the RC beams. The mesoscale modeling that was used to model the concrete required used a special program using different programs but has not used the ABAQUS program directly. The result of the comparison between the numerical and experimental showed that the mesoscale numerical model gave results that were more approximate to the experimental ones, and the mesoscale modeling of reinforced concrete is most convenient when the maximum size of aggregate is decreased.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Mon Aug 01 2011
Journal Name
Journal Of Engineering
EXPERIMENTAL OBSERVATIONS ON THE BEHAVIOR OF A PILED RAFT FOUNDATION
...Show More Authors

The piled raft is a geotechnical composite construction consisting of three elements: piles, raft and soil.
In the design of piled rafts, the load shared between the piles and the raft, and the piles are used up to a
load level that can be of the same order of magnitude as the bearing capacity of a comparable single
pile or even greater. Therefore, the piled raft foundation allows reduction of settlements in a very
economic way as compared to traditional foundation concepts.
This paper presents experimental study to investigate the behavior of piled raft system in sandy
soil. A small scale “prototype” model was tested in a sand box with load applied to the system through
a compression machine. The settlement was

... Show More
View Publication Preview PDF
Crossref (7)
Crossref
Publication Date
Wed May 29 2019
Journal Name
Iraqi Journal Of Physics
Effect of sulfuric acid solution on thermal conductivity and impact strength of epoxy resin reinforced by silicon dioxide powder
...Show More Authors

In this search, Ep/SiO2 at (3, 6, 9, 12 %) composites is prepared by hand Lay-up method, to measure the change in the thermal conductivity and Impact Strength of epoxy resin before and after immersion in H2SO4 Solution with a 0.3N for 10 days. The results before immersion decreases with the increase of the weight ratios of the reinforcement material (SiO2), It changed from (82.6×10-2 to 38.7×10-2 W/m.°C) with change weight ratios from (3 to 12) % respectively, but after immersion time in the chemical solution where it was (65.6×10-2 W/m.°C) at the weight ratios (6 %) and became (46.6 × 10-2 W/m.°C) after immersion in sulfuric acid. The results of the Impact strength decreased by increasing the percentage weight ratio, it changed f

... Show More
View Publication Preview PDF
Crossref
Publication Date
Fri Jan 11 2019
Journal Name
Iraqi Journal Of Physics
Effect of water absorption on some mechanical and physical properties of epoxy/polyurethane blend reinforced with nano silica powder
...Show More Authors

The aim of this work is to evaluate some mechanical and physical
properties (i.e. the impact strength, hardness, flexural strength,
thermal conductivity and diffusion coefficient) of
(epoxy/polyurethane) blend reinforced with nano silica powder (2%
wt.). Hand lay-up technique was used to manufacture the composite
and a magnetic stirrer for blending the components. Results showed
that water had affected the bending flexural strength and hardness,
while impact strength increased and thermal conductivity decreased.
In addition to the above mentioned tests, the diffusion coefficient
was calculated using Fick’s 2nd law.

View Publication
Crossref (3)
Crossref
Publication Date
Sun Oct 01 2017
Journal Name
Journal Of Economics And Administrative Sciences
Fuzzy aggregate production planning by using fuzzy Goal programming with practical application
...Show More Authors

Research summarized in applying the model  of fuzzy goal programming for aggregate production planning , in General Company for hydraulic industries / plastic factory to get an optimal production plan  trying to cope with the impact that fluctuations in demand and  employs all available resources using two strategies where they are available   inventories  strategy and  the strategy of  change in the level of the workforce, these   strategies  costs are usually imprecise/fuzzy. The plant administration trying to minimize total production costs, minimize carrying costs and minimize changes in labour levels. depending on the gained data from th

... Show More
View Publication Preview PDF
Crossref
Publication Date
Fri Apr 01 2016
Journal Name
Journal Of Engineering
Effect of Variation of Degree of Saturation with depth on Soil–Concrete Pile Interface in Clayey Soil
...Show More Authors

Bearing capacity of a concrete pile in fine grained cohesive soils is affected by the degree of saturation of the surrounding soil through the contribution of the matric suction. In addition, the embedded depth and the roughness of the concrete pile surface (expressed as British Pendulum Number BPN) also have their contribution to the shear strength of the concrete pile, consequently its bearing capacity. Herein, relationships among degree of saturation, pile depth, and surface roughness, were proposed as a mathematical model expressed as an equation where the shear strength of a pile can be predicted in terms of degree of saturation, depth, and BPN. Rel

... Show More
View Publication Preview PDF
Publication Date
Fri Sep 08 2006
Journal Name
Journal Of Engineering
INFLUENCE OF DEFECT IN THE CONCRETE PILES USING NON-DESTRUCTIVE TESTING
...Show More Authors

This paper presents the results of experimental investigation carried out on concrete model piles to study the behaviour of defective piles. This was achieved by employing non-destructive tests using ultrasonic waves. It was found that the reduction in pile stiffness factor is found to be about (26%) when the defect ratio increased from (5%) to (15%). The modulus of elasticity reduction factor as well as the dynamic modulus of elasticity reduction factor increase with the defect ratio

Publication Date
Wed Sep 01 2021
Journal Name
Iop Conference Series: Earth And Environmental Science
Improving the Properties of Asphalt Concrete Mixtures Using Iron Filling Wastes
...Show More Authors

View Publication
Scopus (4)
Crossref (4)
Scopus Crossref
Publication Date
Thu Jun 01 2023
Journal Name
Baghdad Science Journal
Modeling The Power Grid Network Of Iraq
...Show More Authors

Recently, the theory of Complex Networks gives a modern insight into a variety of applications in our life. Complex Networks are used to form complex phenomena into graph-based models that include nodes and edges connecting them. This representation can be analyzed by using network metrics such as node degree, clustering coefficient, path length, closeness, betweenness, density, and diameter, to mention a few. The topology of the complex interconnections of power grids is considered one of the challenges that can be faced in terms of understanding and analyzing them. Therefore, some countries use Complex Networks concepts to model their power grid networks. In this work, the Iraqi Power Grid network (IPG) has been modeled, visua

... Show More
View Publication Preview PDF
Scopus (3)
Scopus Crossref
Publication Date
Sat Jun 01 2024
Journal Name
Computational Condensed Matter
Computational modeling study on the physical properties of Pd doped BaTiO3 perovskite
...Show More Authors

This contribution investigates structural, electronic, and optical properties of cubic barium titanate (BaTiO3) perovskites using first-principles calculations of density functional theory (DFT). Generalized gradient approximations (GGA) alongside with PW91 functional have been implemented for the exchange–correlation potential. The obtained results display that BaTiO3 exhibits a band gap of 3.21 eV which agrees well with the previously experimental and theoretical literature. Interestingly, our results explore that when replacing Pd atom with Ba and Ti atoms at 0.125 content a clear decrease in the electronic band gap of 1.052 and 1.090 eV located within the visible range of electromagnetic wavelengths (EMW). Optical parameters such as a

... Show More
View Publication
Scopus (8)
Crossref (10)
Scopus Clarivate Crossref
Publication Date
Mon Jan 18 2021
Journal Name
Materials Science And Engineering
Properties of engineered cementitious composite concrete (bendable concrete) produced using Portland limestone cement
...Show More Authors

Bendable concrete, also known as Engineered Cementitious Composite (ECC) is a type of ultra-ductile cementitious composites reinforced with fibres to control the width of cracks. It has the ability to enhance concrete flexibility by withstanding strains of 3% and higher. The properties of bendable concrete mixes (compressive strength, flexural strength, and drying shrinkage) are here assessed after the incorporation of supplementary cementitious materials, silica fume, polymer fibres, and the use of ordinary Portland cement (O.P.C) and Portland limestone cement (IL). Mixes with Portland limestone cement show lower drying shrinkage and lower compressive and flexural strength than mixes with ordinary Portland cement, due to the ratio o

... Show More