Piled raft is commonly used as foundation for high rise buildings. The design concept of piled raft foundation is to minimize the number of piles, and to utilize the entire bearing capacity. High axial stresses are therefore, concentrated at the region of connection between the piles and raft. Recently, an alternative technique is proposed to disconnect the piles from the raft in a so called unconnected piled raft (UCPR) foundation, in which a compacted soil layer (cushion) beneath the raft, is usually introduced. The piles of the new system are considered as reinforcement members for the subsoil rather than as structural members. In the current study, the behavior of unconnected piled rafts systems has been studied numerically by means of 3D Finite Element analysis via ABAQUS software. The numerical analysis was carried out to investigate the effect of thickness and stiffness of the cushion, pile length, stiffness of foundation soil, and stiffness of bearing soil on the performance of the unconnected piled raft. The results indicate that when unconnected piles are used, the axial stress along the pile is significantly reduced e.g. the axial stress at head of unconnected pile is decreased by 37.8% compared with that related to connected pile. It is also found that the stiffness and thickness of the cushion, and stiffness of foundation soil have considerable role on reduction the settlement.
Preserving and saving energy have never been more important, thus the requirement for more effective and efficient heat exchangers has never been more important. However, in order to pave the way for the proposal of a truly efficient technique, there is a need to understand the shortcomings and strengths of various aspects of heat transfer techniques. This review aims to systematically identify these characteristics two of the most popular passive heat transfer techniques: nanofluids and helically coiled tubes. The review indicated that nanoparticles improve thermal conductivity of base fluid and that the nanoparticle size, as well as the concentrations of the nanoparticles plays a major role in the effectiveness of the nanofluids.
... Show MoreMany tools and techniques have been recently adopted to develop construction materials that are less harmful and friendlier to the environment. New products can be achieved through the recycling of waste material. Thus, this study aims to use recycled glass bottles as sustainable materials.
Our challenge is to use nano glass powder by the addition or replacement of the weight of the cement for producing concrete with enhanced strength.
A nano recycled glass p
Ultraviolet light radiation is applied to treat Plaque Psoriasis disease by targeted phototherapy. This is available through Narrowband-UVB light radiation devices peaked at wavelength 311 nm. Ten cases were chosen as a study group, 8 males aged 22-40 years old, and 2 females aged 25 and 32 years old who were exposed to ultraviolet light radiation. Their recovery or improvement was followed weekly. Different doses were used according to the severity of the lesion and as a trial for the outcome. The dose was given two times a week, starting with 200mJ/cm2, and subsequently increased by 100 or 200 mJ/cm2 reaching a maximum dose as tolerated by each individual patient. Improvement was observed after 4 – 6 weeks. The
... Show MoreThe frequent and widespread use of medicines and personal care products, particularly in the residential environment, tends to raise concerns about environmental and human health impacts. On the other hand, carbon dioxide accumulation in the atmosphere is a problem with numerous environmental consequences. Microalgae are being used to bioremediate toxins and capture CO2. The current study aimed to confirm the possibility of removing pharmaceutical contaminant (Ranitidine) at different concentrations by using the Chlorella Sorokiniana MH923013 microalgae strain during the growth time. As part of the experiment, carbon dioxide was added to the culture medium three times per week. Explanatory results revealed that gas doses directly affect
... Show MoreWorldwide, shipping documents are still primarily created and handled in the traditional paper manner. Processes taking place in shipping ports as a result are time-consuming and heavily dependent on paper. Shipping documents are particularly susceptible to paperwork fraud because they involve numerous parties with competing interests. With the aid of smart contracts, a distributed, shared, and append-only ledger provided by blockchain technology allows for the addition of new records. In order to increase maritime transport and port efficiency and promote economic development, this paper examines current maritime sector developments in Iraq and offers a paradigm to secure the management system based on a hyper-ledger fabric blockchain p
... Show More