Preferred Language
Articles
/
joe-888
WSN-WCCS: A Wireless Sensor Network Wavelet Curve Ciphering System
...Show More Authors

With wireless sensor network (WSN) wide applications in popularity, securing its data becomes a requirement. This can be accomplished by encrypting sensor node data. In this paper a new an efficient symmetric cryptographic algorithm is presented. This algorithm is called wireless sensor network wavelet curve ciphering system (WSN-WCCS).  The algorithm idea based on discrete wavelet transformation to generate keys for each node in WSN.  It implements on hierarchical clustering WSN using LEACH protocol. Python programming language version 2.7 was used to create the simulator of WSN framework and implement a WSN-WCCS algorithm. The simulation result of the proposed WSN-WCCS with other symmetric algorithms has shown that its execution time fastest among AES, 3DES and DES 15%, 55% and 17%.

 

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sun Dec 01 2013
Journal Name
Political Sciences Journal
Yemeni political system: a study of the internal variables
...Show More Authors

النظام السياسي اليمني : دراسة في المتغيرات الداخلية

View Publication Preview PDF
Crossref
Publication Date
Sat Mar 10 2012
Journal Name
الدنانير
Cryptography Using Artificial Neural Network
...Show More Authors

Neural cryptography deals with the problem of “key exchange” between two neural networks by using the mutual learning concept. The two networks exchange their outputs (in bits) and the key between two communicating parties ar eventually represented in the final learned weights, when the two networks are said to be synchronized. Security of neural synchronization is put at risk if an attacker is capable of synchronizing with any of the two parties during the training process.

Preview PDF
Publication Date
Thu Jan 01 2009
Journal Name
Computer And Information Science 2009
The Stochastic Network Calculus Methodology
...Show More Authors

Home Computer and Information Science 2009 Chapter The Stochastic Network Calculus Methodology Deah J. Kadhim, Saba Q. Jobbar, Wei Liu & Wenqing Cheng Chapter 568 Accesses 1 Citations Part of the Studies in Computational Intelligence book series (SCI,volume 208) Abstract The stochastic network calculus is an evolving new methodology for backlog and delay analysis of networks that can account for statistical multiplexing gain. This paper advances the stochastic network calculus by deriving a network service curve, which expresses the service given to a flow by the network as a whole in terms of a probabilistic bound. The presented network service curve permits the calculation of statistical end-to-end delay and backlog bounds for broad

... Show More
View Publication
Scopus (1)
Crossref (2)
Scopus Crossref
Publication Date
Thu Jun 01 2023
Journal Name
Iraqi Journal Of Physics
Studying the Effect of Initial Conditions and System Parameters on the Behavior of a Chaotic Duffing System
...Show More Authors

This work presents a five-period chaotic system called the Duffing system, in which the effect of changing the initial conditions and system parameters d, g and w, on the behavior of the chaotic system, is studied. This work provides a complete analysis of system properties such as time series, attractors, and Fast Fourier Transformation Spectrum (FFT). The system shows periodic behavior when the initial conditions xi and yi equal 0.8 and 0, respectively, then the system becomes quasi-chaotic when the initial conditions xi and yi equal 0 and 0, and when the system parameters d, g and w equal 0.02, 8 and 0.09. Finally, the system exhibits hyperchaotic behavior at the first two conditions, 0 and 0, and the bandwidth of the chaotic

... Show More
View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Mon Jul 18 2022
Journal Name
Ieee Access
Moderately Multispike Return Neural Network for SDN Accurate Traffic Awareness in Effective 5G Network Slicing
...Show More Authors

Due to the huge variety of 5G services, Network slicing is promising mechanism for dividing the physical network resources in to multiple logical network slices according to the requirements of each user. Highly accurate and fast traffic classification algorithm is required to ensure better Quality of Service (QoS) and effective network slicing. Fine-grained resource allocation can be realized by Software Defined Networking (SDN) with centralized controlling of network resources. However, the relevant research activities have concentrated on the deep learning systems which consume enormous computation and storage requirements of SDN controller that results in limitations of speed and accuracy of traffic classification mechanism. To fill thi

... Show More
Scopus (17)
Crossref (13)
Scopus Clarivate Crossref
Publication Date
Fri Dec 31 2021
Journal Name
Iraqi Journal Of Laser
The influence of no-core fibre length on the sensitivity Optical fibre Humidity sensor
...Show More Authors

Abstract: Reflection optical fibre Humidity sensor is presented in this work, which is based on no core fibre prepared by splicing a segment of no core fibre (NCF) at different lengths 1-6 cm with fixed diameter 125 µm and a single mode fibre (SMF). The range of humidity inside the chamber is controlled from 30% to 90% RH at temperature ~ 30 °С. The experimental result shows that the resonant wavelength dip shift decreases linearly with an increment of RH% and the sensitivity of the sensor increased linearly with an increasing in the length of NCF. However, a high sensitivity 716.07pm/RH% is obtained at length 5cm with good stability and reputability.  Furthermore, the sensor is shif

... Show More
View Publication Preview PDF
Publication Date
Sat Feb 09 2019
Journal Name
Journal Of The College Of Education For Women
Comparative Study of Image Denoising Using Wavelet Transforms and Optimal Threshold and Neighbouring Window
...Show More Authors

NeighShrink is an efficient image denoising algorithm based on the discrete wavelet
transform (DWT). Its disadvantage is to use a suboptimal universal threshold and identical
neighbouring window size in all wavelet subbands. Dengwen and Wengang proposed an
improved method, which can determine an optimal threshold and neighbouring window size
for every subband by the Stein’s unbiased risk estimate (SURE). Its denoising performance is
considerably superior to NeighShrink and also outperforms SURE-LET, which is an up-todate
denoising algorithm based on the SURE. In this paper different wavelet transform
families are used with this improved method, the results show that Haar wavelet has the
lowest performance among

... Show More
View Publication Preview PDF
Publication Date
Wed Jan 01 2020
Journal Name
Journal Of Southwest Jiaotong University
The Arithmetic Coding and Hybrid Discrete Wavelet and Cosine Transform Approaches in Image Compression
...Show More Authors

Image compression is one of the data compression types applied to digital images in order to reduce their high cost for storage and/or transmission. Image compression algorithms may take the benefit of visual sensitivity and statistical properties of image data to deliver superior results in comparison with generic data compression schemes, which are used for other digital data. In the first approach, the input image is divided into blocks, each of which is 16 x 16, 32 x 32, or 64 x 64 pixels. The blocks are converted first into a string; then, encoded by using a lossless and dictionary-based algorithm known as arithmetic coding. The more occurrence of the pixels values is codded in few bits compare with pixel values of less occurre

... Show More
View Publication
Crossref (3)
Crossref
Publication Date
Fri Sep 01 2017
Journal Name
International Journal Of Engineering Research And Advanced Technology
. Medical Image Compression using Hybrid Technique of Wavelet Transformation and Seed Selective Predictive Method
...Show More Authors

Publication Date
Tue Feb 17 2026
Journal Name
Sustainable Engineering And Innovation
Morlet wavelet–based olfactory-evoked EEG features for random forest classification of normal, aMCI, and Alzheimer’s disease
...Show More Authors

Olfactory impairment and abnormal frontal EEG oscillations are recognized as early markers of Alzheimer’s disease (AD). Using a publicly available olfactory EEG dataset of 35 subjects spanning normal cognition, amnestic mild cognitive impairment (aMCI), and AD, each with MMSE scores and demographics, stimulus-locked epochs from four electrodes (Fp1, Fz, Cz, Pz) were processed with wavelet-based time–frequency analysis. Band-limited power ratios (delta, theta, alpha, beta) were computed as log-transformed post-odor/baseline values and aggregated to subject-level features. Statistical analyses revealed graded attenuation of odor-evoked frontal (Fp1) band-power ratios across groups, with significant differences in several band–od

... Show More
View Publication
Crossref