Water is the basis of the existence of all kinds of life, so obtaining it with good quality represents a challenge to human existence and development especially in the desert and remote cities because these areas contain small populations and water purification requires great materials and huge amounts of fossil fuels resulting pollution of the environment. Cheap and environmentally friendly desalination methods have been done by using solar distillations. Passive solar stills have low yields, so in this research, the problem is overcome by connecting four heat pipes which are installed on the parabolic concentrator reflector with passive solar still to increase the temperature of hot water to more than 90°C, as a result, the yield increases. An extensive theory is studied to manufacture two systems: the first consists of passive solar still has dimensions are 1000 mm × 500 mm and the glass cover tilted at the angle 33°. It is approximately equal to the latitude of the city of Baghdad [(Latitude: (33.34° N) Longitude: (44.4° E)]. This gives 5.04 kg/m2.day, the second solar still which is associated with 4 heat pipes gives a water yield of about 7. 2 kg/m2.day. This means that the improvement in the daily production of distilled water is 50 % over the productivity of the passive solar still All results above are calculated when the depth of water is 1. 5 cm. In addition, heat balance for each part of the system is achieved and calculations of the performance of the solar still are done by using the program in the language of Matlab. All these results are compared with the experimental ones of different depths of water (1.5 cm, 2 cm, 3 cm, and 4 cm) which are taken from the experimental part to ensure the system reliability at different weather conditions in Baghdad throughout the year and to give a good approach. The system associated with heat pipes gives promising results and can be widely used for its abundant productivity and durability of its components. (TDS) and (pH) value are carried out in the laboratory and it is found that water is safe and pure for drinking.
In many oil-recovery systems, relative permeabilities (kr) are essential flow factors that affect fluid dispersion and output from petroleum resources. Traditionally, taking rock samples from the reservoir and performing suitable laboratory studies is required to get these crucial reservoir properties. Despite the fact that kr is a function of fluid saturation, it is now well established that pore shape and distribution, absolute permeability, wettability, interfacial tension (IFT), and saturation history all influence kr values. These rock/fluid characteristics vary greatly from one reservoir region to the next, and it would be impossible to make kr measurements in all of them. The unsteady-state approach was used to calculate the relat
... Show MoreThe fall angle of sun rays on the surface of a photovoltaic PV panel and its temperature is negatively affecting the panel electrical energy produced and efficiency. The fall angle problem was commonly solved by using a dual-axis solar tracker that continually maintains the panel orthogonally positioning to the sun rays all day long. This leads to maximum absorption for solar radiation necessary to produce maximum amount of energy and maintain high level of electrical efficiency. To solve the PV panel temperature problem, a Water-Flow Double Glazing WFDG technique has been introduced as a new cooling tool to reduce the panel temperature. In this paper, an integration design of the water glazing system with a dual-axis tracker has been ac
... Show MoreThe aim of this research is to assess the validity of Detailed Micro-Modeling (DMM) as a numerical model for masonry analysis. To achieve this aim, a set of load-displacement curves obtained based on both numerical simulation and experimental results of clay masonry prisms loaded by a vertical load. The finite element method was implemented in DMM for analysis of the experimental clay masonry prism. The finite element software ABAQUS with implicit solver was used to model and analyze the clay masonry prism subjected to a vertical load. The load-displacement relationship of numerical model was found in good agreement with those drawn from experimental results. Evidence shows that load-displacement curvefound from the finite element m
... Show MoreComputer modeling has been used to investing the Coulomb coupling parameter ?. The effects of the structure parameter K, grain charge Z, plasma density N, temperature dust grain Td, on the Coulomb coupling parameter had been studied. It was seen that the ? was increasing with increasing Z and N, and decrease with increasing K and T. Also the critical value of ? that the phase transfer of the plasma state from liquid to solid was studied.
Under-reamed piles defined by having one or more bulbs have the potential for sizeable major sides over conventional straight-sided piles, most of the studies on under-reamed piles have been conducted on the experimental side, while theoretical studies, such as the finite element method, have been mainly confined to conventional straight-sided piles. On the other hand, although several laboratory and experimental studies have been conducted to study the behavior of under-reamed piles, few numerical studies have been carried out to simulate the piles' performance. In addition, there is no research to compare and evaluate the behavior of these piles under dynamic loading. Therefore, this study aimed to numerically investigate bearing capaci
... Show MorePressure retarded osmosis (PRO) can be considered as one of the methods for utilizing osmotic power, which is a membrane-based technology. Mathematical modeling plays an essential part in the development and optimization of PRO energy-generating systems. In this research, a mathematical model was developed for the hollow fiber module to predict the power density and the permeate water flux theoretically. Sodium chloride solution was employed as the feed and draw solution. Different operating parameters, draw solution concentration (1 and 2 M), the flow rate of draw solution (2, 3, and 4 L/min), and applied hydraulic pressure difference (0 - 90 bar) was used to evaluate the performance of PRO process of a hollow fiber module. The eff
... Show MoreThe aim of this paper is to estimate the concentrations of some heavy metals in Mohammed AL-Qassim Highway in Baghdad city for different distances by using the polynomial interpolation method for functions passing from the data, which is proposed by using the MATLAB software. The sample soil in this paper was taken from the surface layer (0-25 cm depth) at the two sides of the road with four distances (1.5, 10, 25 and 60 m) in each side of the road. Using this method, we can find the concentrations of heavy metals in the soil at any depth and time without using the laboratory, so this method reduces the time, effort and costs of conducting laboratory analyzes.
We investigated at the optical properties, structural makeup, and morphology of thin films of cadmium telluride (CdTe) with a thickness of 150 nm produced by thermal evaporation over glass. The X-ray diffraction study showed that the films had a crystalline composition, a cubic structure, and a preference for grain formation along the (111) crystallographic direction. The outcomes of the inquiry were used to determine these traits. With the use of thin films of CdTe that were doped with Ag at a concentration of 0.5%, the crystallization orientations of pure CdTe (23.58, 39.02, and 46.22) and CdTe:Ag were both determined by X-ray diffraction. orientations (23.72, 39.21, 46.40) For samples that were pure and those that were doped with
... Show MoreSolar energy is the most abundant renewable energy source. This energy can be converted directly into electricity using solar panels. The fixed tilt solar panels are the most practical and the most widely installed throughout the world. Optimum tilt angle calculation has the advantage that it does not use expensive solar trackers. This research calculates the seasonal optimum tilt angle of solar panels for 17 cities in Iraq and 83 cities in 83 countries distributed around the world. Solar Panel Angle Calculator program was used in calculating the optimum tilt angles from vertical. The optimum tilt angle varies between 6° and 112° throughout the year. This angle for winter, spring/ autumn and summer seasons are found to be between
... Show More