In this paper, an Anti-Disturbance Compensator is suggested for the stabilization of a 6-DoF quadrotor Unmanned Aerial vehicle (UAV) system, namely, the Improved Active Disturbance Rejection Control (IADRC). The proposed Control Scheme rejects the disturbances subjected to this system and eliminates the effect of the uncertainties that the quadrotor system exhibits. The complete nonlinear mathematical model of the 6-DoF quadrotor UAV system has been used to design the four ADRCs units for the attitude and altitude stabilization. Stability analysis has been demonstrated for the Linear Extended State Observer (LESO) of each IADRC unit and the overall closed-loop system using Hurwitz stability criterion. A minimization to a proposed multi-objective Output Performance Index (OPI) is achieved in the MATLAB environment to tune the IADRCs parameters using Genetic Algorithm (GA). The IADRC has been tested for the 6-DOF quadrotor under different tracking scenarios, including disturbance rejection and uncertainties elimination and compared with nonlinear and linear PID controllers. The simulations showed the excellent performance of the proposed compensator against the controllers used in the comparison.
A novel mixed natural coagulant has been developed to remove sewage pollutants and heavy metals from Qanat- al- Jayesh by using low cost adsorbent natural materials. In these materials, significant interaction contains Arabic gum mixed with extracted silica from rice husk ash (natural coagulants) by the Batch device approach, using two variables, pH values ranging from 5-8 and contact times between 0.25-5 hrs. All wastewater samples were collected after treatment by adsorbents and examined for determination of residual heavy metal concentrations: Pb, Ni, Zn and Cu by atomic absorption spectroscopy (AAS), turbidity, pH, total dissolved salts (TDS), electrical conductivity (EC) and total salinity (TS). The results obtained indicate Th
... Show MoreWith the rapid development of smart devices, people's lives have become easier, especially for visually disabled or special-needs people. The new achievements in the fields of machine learning and deep learning let people identify and recognise the surrounding environment. In this study, the efficiency and high performance of deep learning architecture are used to build an image classification system in both indoor and outdoor environments. The proposed methodology starts with collecting two datasets (indoor and outdoor) from different separate datasets. In the second step, the collected dataset is split into training, validation, and test sets. The pre-trained GoogleNet and MobileNet-V2 models are trained using the indoor and outdoor se
... Show MoreSoftware-defined networking (SDN) presents novel security and privacy risks, including distributed denial-of-service (DDoS) attacks. In response to these threats, machine learning (ML) and deep learning (DL) have emerged as effective approaches for quickly identifying and mitigating anomalies. To this end, this research employs various classification methods, including support vector machines (SVMs), K-nearest neighbors (KNNs), decision trees (DTs), multiple layer perceptron (MLP), and convolutional neural networks (CNNs), and compares their performance. CNN exhibits the highest train accuracy at 97.808%, yet the lowest prediction accuracy at 90.08%. In contrast, SVM demonstrates the highest prediction accuracy of 95.5%. As such, an
... Show MoreSemantic segmentation is an exciting research topic in medical image analysis because it aims to detect objects in medical images. In recent years, approaches based on deep learning have shown a more reliable performance than traditional approaches in medical image segmentation. The U-Net network is one of the most successful end-to-end convolutional neural networks (CNNs) presented for medical image segmentation. This paper proposes a multiscale Residual Dilated convolution neural network (MSRD-UNet) based on U-Net. MSRD-UNet replaced the traditional convolution block with a novel deeper block that fuses multi-layer features using dilated and residual convolution. In addition, the squeeze and execution attention mechanism (SE) and the s
... Show MoreBackground: Nursing interventions tailored to the smoking triggers in patients with non-communicable chronic diseases are essential. However, these interventions are scant due to the nature of factors associated with smoking cessation and the poor understanding of the effect of nurse-led intervention in Iraq.Purpose: This study aimed to determine the dominant smoking triggers and examine the effects of a tailored nursing intervention on smoking behavior in patients with non-communicable chronic diseases.Methods: Convenience samples of 128 patients with non-communicable chronic diseases, male and female patients, who were 18-70 years old, were recruited in this quasi-experimental, randomized comparative trial in the outpatient clinic
... Show Moreoptical properties of pure poly(vinyl Alcohol) films and poly(vinyl Alcohol) doped with methyl red were study, different percentage prepared with constant thickness using casting technique. Absorption, Transmission spectra have been recorded in order to study the optical parameters such as absorption coefficient, energy gap, refractive index, Extinction coefficient and dispersion parameters were measured in the wavelength range (200-800)nm. This study reveals that the optical properties of PVA affect by increasing the impurity concentration.
The present work aims to study forward osmosis process using different kinds of draw solutions and membranes. Three types of draw solutions (sodium chloride, sodium formate, and sodium acetate) were used in forward osmosis process to evaluate their effectiveness with respect to water flux and reverse salt flux. Experiments conducted in a laboratory-scale forward osmosis (FO) unit in cross flow flat sheet membrane cell. Three types of membranes (Thin film composite (TFC), Cellulose acetate (CA), and Cellulose triacetate (CTA)) were used to determine the water flux under osmotic pressure as a driving force. The effect of temperature, draw solution concentration, feed and draw solution flow rate, and membrane types, were studied with
... Show More