In this study, the modified Rayleigh-Ritz method and Fourier series are used to determine the thermal buckling behavior of laminated composite thin plates with a general elastic boundary condition applied to in-plane uniform temperature distribution depending upon classical laminated plate theory(CLPT). A generalized procedure solution is developed for the Rayleigh-Ritz method combined with the synthetic spring technique. The transverse displacement of the orthotropic rectangular plates is not a different term as a new shape expansion of trigonometric series. In this solution approach, the plate transverse deflection and rotation due to bending are developed into principle Fourier series with a sufficient smoothness auxiliary polynomial function, the variable of boundary condition can be easily done by only change the boundary spring stiffness of at the all boundaries of laminated composite plate without achieving any replacement to the solution. The accuracy of the current outcome is verified by comparing with the result obtained from other analytical methods in addition to the finite element method (FEM), so the excellent of this technique is proving during numerical examples.
This study aimed to investigate the effect of total suspended solids (TSS) on the performance of a continuously operated dual-chamber microbial fuel cell (MFC) proceeded by primary clarifier to treat actual potato chips processing wastewater. The system was also tested in the absence of the primary clarifier and the results demonstrated a significant effect of TSS on the polarization curve of the MFC which was obtained by operating the graphite anodic electrode against Ag/AgCl reference electrode. The maximum observed power and current densities were decreased form 102.42 mW/m2 and 447.26 mA/m2 to 80.16 mW/m2 and 299.10 mA/m2, respectively due to the adverse effect of TSS. Also
... Show MoreIn addition to the primary treatment, biological treatment is used to reduce inorganic and organic components in the wastewater. The separation of biomass from treated wastewater is usually important to meet the effluent disposal requirements, so the MBBR system has been one of the most important modern technologies that use plastic tankers to transport biomass with wastewater, which works in pure biofilm, at low concentrations of suspended solids. However, biological treatment has been developed using the active sludge mixing process with MBBR. Turbo4bio was established as a sustainable and cost-effective solution for wastewater treatment plants in the early 1990s and ran on minimal sludge, and is easy to maintain. This
... Show MoreBackground: Candida albicans is a prevalent commensal that can cause severe health problems in humans. One such condition that frequently returns after treatment is oral candidiasis. Aim: the goal of this research is to evaluate the efficiency of 940 nm as a fungicidal on the growth of Candida albicans in vitro. Material and Methods: In vitro samples (fungal swabs) were taken from the oral cavity of 75 patients suffering from oral thrush. Following the process of isolating and identifying Albicans. The samples are divided into four groups:(Group 1): Suspension of C. albicans was put in a solution of saline as a control group. (Group 2): Suspension of C. albicans that had been treated wit
... Show MoreThe behavior corrosion inhibition of aluminum alloy (Al6061) in acidic (0.1 M HCl) and saline (3.5% NaCl) solutions was investigated in the absence and the presence of expired diclofenac sodium drug (DSD) as a corrosion inhibitor. The influence of temperature and was studied using electrochemical techniques. In addition, scanning electron microscopy (SEM) was used to study the surface morphology. The results showed that DSD acted as a powerful inhibitor in acidic solutions, while a moderate influence was observed with saline one. Maximum inhibition efficiency was 99.99 and 83.32% in acidic and saline solutions at 150 ppm of DSD, respectively. Corrosion current density that obtained using electrochemical technique was increased with temperat
... Show MorePlatelet‐rich fibrin (PRF) has been widely used in regenerative dentistry due to many growth factors produced. Periostin, a matricellular protein, is a reliable marker for tissue regeneration. Periostin is part of the cellular matrix and regulates bone homeostasis. This study aims to explore the efficacy of PRF in improvement of the clinical periodontal parameters as an adjunct to the scaling and root planing and to evaluate periostin level in gingival crevicular fluid (GCF) at baseline, 1‐ and 3‐month recall visits. Fourteen periodontitis patients who met the inclusion criteria were recruited in this study. Two contralateral periodontal pockets with 4–6 mm in depth in each patient were sel
This study involved the treatment of textile wastewater contaminated with direct blue 15 dye (DB15) using a heterogeneous photo-Fenton-like process. Bimetallic iron/copper nanoparticles loaded on bentonite clay were used as heterogeneous catalysts and prepared via liquid-phase reduction method using eucalyptus leaves extract (E-Fe/Cu@BNPs). Characterization methods were applied to resultant particles (NPs), including SEM, BET, and FTIR techniques. The prepared NPs were found with porous and spherical shapes with a specific surface area of particles was 28.589 m2/g. The effect of main parameters on the photo-Fenton-like degradation of DB15 was investigated through batch and continuous fixed-bed systems. In batch mode, pH, H2O2 dosage, DB15 c
... Show MoreReaxys Chemistry database information SciVal Topics Metrics Abstract A novel CoO–ZnO nanocomposite was synthesized by the photo irradiation method using a solution of cobalt and zinc complexes and used as a coating applied by electrophoretic deposition (EPD) for corrosion protection of stainless steel (SS) in saline solution. The samples were characterized using powder XRD, scanning electron microscopy (SEM) and electrochemical polarization. It was also found that the coating was still stable after conducting the corrosion test: it contained no cracks and CoO–ZnO nanocomposites clearly appeared on the surface. SEM showed that the significant surface cracking disappeared. XRD confirmed that CoO–ZnO nanocomposites comprised CoO and Zn
... Show MoreThis study shows that it is possible to fabricate and characterize green bimetallic nanoparticles using eco-friendly reduction and a capping agent, which is then used for removing the orange G dye (OG) from an aqueous solution. Characterization techniques such as scanning electron microscopy (SEM), Energy Dispersive Spectroscopy (EDAX), X-Ray diffraction (XRD), and Brunauer-Emmett-Teller (BET) were applied on the resultant bimetallic nanoparticles to ensure the size, and surface area of particles nanoparticles. The results found that the removal efficiency of OG depends on the G‑Fe/Cu‑NPs concentration (0.5-2.0 g.L-1), initial pH (2‑9), OG concentration (10-50 mg.L-1), and temperature (30-50 °C). The batch experiments showed
... Show More