The main aim of this paper is studied the punching shear and behavior of reinforced concrete slabs exposed to fires, the possibility of punching shear failure occurred as a result of the fires and their inability to withstand the loads. Simulation by finite element analysis is made to predict the type of failure, distribution temperature through the thickness of the slabs, deformation and punching strength. Nonlinear finite element transient thermal-structural analysis at fire conditions are analyzed by ANSYS package. The validity of the modeling is performed for the mechanical and thermal properties of materials from earlier works from literature to decrease the uncertainties in data used in the analysis. A parametric study was adopted in this study, it has many factors such as the ratios of length to thickness, fire temperature, time exposed to fire, concrete compressive strength, area exposed to fires and type of support. It can be concluded from this research the significant factors that affect the punching shear strength. However, the increasing ratio of length to thickness may be lead to increasing the deflection more than 123% at fire condition. Also, the increasing temperature leads to increasing the deflection about 40% at fire condition.
The slurry infiltrated fiber concrete (SIFCON) is nowadays considered a special type of high fiber content concrete; it is high strength and high performance material. This paper investigates the effect of spread steel fiber into the slurry mortar on some properties of SIFCON. According to fiber distribution, two sets were used in this investigation. The first set consisted of randomly distributing fibers inside the slurry. The second set was by placing the fibers in an orderly manner inside the slurry. Crimped steel fibers with an aspect ratio of (60) were used. Two different volume fractions percentage of (7% and 9%) by volume of mold were used in both sets for this study. Also, a w/c ratio of (0.35) and superplasticiz
... Show MoreBackground: The aim of this study was to evaluate the shear bond strength (SBS) and adhesive remnant index (ARI) of different orthodontic adhesive systems after exposure to aging media (water storage and acid challenge). Materials and methods: Eighty human upper premolar teeth were extracted for orthodontic purposes and randomly divided into two groups (40 teeth each): the first group in which the bonded teeth were stored in distilled water for 30 days at 37°C, and the second group in which the bonded teeth were subjected to acid challenge. Each group was further subdivided into four subgroups (10 teeth each) according to the type of adhesive system that would be bonded to metal brackets: either non-fluoride releasing adhesive (NFRA),
... Show MoreIn this paper, three types of epoxy-based coatings (Polyamide, pure Polyamine, and Polyamine reinforced by glass-flake) used as a lining for potable water tanks were studied using experimental and finite element methods. Tensile, impact, and fatigue tests were conducted on uncoated and coated AISI 316 stainless steel. The test results show that the applied epoxy based coating improves the mechanical properties, increases of fatigue crack resistance, and enhance the dynamic fracture toughness. The fatigue crack propagation is influenced by the compositions of epoxy coating, and the glass-flake improves the coating resistance to fatigue crack propagation compared to other types.
The purpose of this study is designate quenching and tempering heat treatment by using Taguchi technique to determine optimal factors of heat treatment (austenitizing temperature, percentage of nanoparticles, type of base media, nanoparticles type and soaking time) for increasing hardness, wear rate and impact energy properties of 420 martensitic stainless steel. An (L18) orthogonal array was chosen for the design of experiment. The optimum process parameters were determined by using signal-to-noise ratio (larger is better) criterion for hardness and impact energy while (Smaller is better) criterion was for the wear rate. The importance levels of process parameters that effect on hardness, wear rate and impact energy propertie
... Show MoreIn this work, magnesium aluminate spinel (MA) (MgO 28 wt%, Al2O3 72 wt%) stoichiometric compound , were synthesized via solid state reaction (SSR) Single firing stage, and the impact of sintering on the physical properties and thermal properties as well as the fine structure and morphology of the ceramic product were examined. The Spinel samples were pressed at of (14 MPa) and sintering soaking time (2h). The effect of adding oxide titania (TiO2) was studied. The obtained powders were calcined at a temperature range of 1200 and 1400 °C. The calcined samples spinel were characterized by XRD, it showed the presence of developed spinel phase end also showed that the best catalyst is titania. The SEM image showed the high sintering temperat
... Show MoreThis study aims to suggest a technique for soil properties improvement of AL- Kadhimin shrine Minaret and to support the foundation, which has a tilt of roughly 80 cm from the vertical axis. The shrine of the AL- Kadhimin is made up of four minarets with two domes set in a large courtyard. The four minarets have skewed to varying degrees due to uncontrolled dewatering inside the shrine in recent years. However, the northeast minaret was the most inclined due to its proximity to the well placed inside shrine courtyard. When the well near the minaret is operated, the water level drops, increasing the effective stresses of the soil and causing differential settling of the minaret foundation. To maintain the minaret's foundation from potenti
... Show MoreThe ratio of draft tube to reactor diameters is of decisive importance for the operation behavior of air lift loop reactors. The influence of draft tube geometry was investigated with respect to oxygen mass transfer and mixing time. The diameter ratio was varied between 0.33 and 0.80. The measurements were performed in two loop reactors with liquid capacities of 11.775 and 26.49 liters using aqueous with solutions of different coalescence behavior. The results show that there is no single diameter ratio which would produce most favorable conditions for the two process parameters. With respect to the more important requirements of aerobic cultures, i.e high oxygen mass transfer and efficient mixing, a diameter ratio between 0.5 and 0.6 is
... Show MoreLithium–Manganese ferrites having the chemical formula (Li0.5-0.5x Mnx Fe2.5-0.5x O4), (0 ≤ x ≤ 1) were prepared by double sintering powder processing. The density of the ferrite increased with Mn content while the porosity was noticed to decrease. The dielectric constant was found to increase at high frequencies more rapidly than the low ones. The dielectric constant found to decrease with Mn content. The decrease in loss factor with frequency agreed with Deby’s type relaxation process. A maximum of dielectric loss factor was observed when the hopping frequency is equal to the external electric field frequency. Manganese substitution reduced the dielectric loss in ferrite. The variation of tanδ with frequency shows a similar na
... Show More