A model using the artificial neural networks and genetic algorithm technique is developed for obtaining optimum dimensions of the foundation length and protections of small hydraulic structures. The procedure involves optimizing an objective function comprising a weighted summation of the state variables. The decision variables considered in the optimization are the upstream and downstream cutoffs lengths and their angles of inclination, the foundation length, and the length of the downstream soil protection. These were obtained for a given maximum difference in head, depth of impervious layer and degree of anisotropy. The optimization carried out is subjected to constraints that ensure a safe structure against the uplift pressure force and sufficient protection length at the downstream side of the structure to overcome an excessive exit gradient. The Geo-studio software was used to analyze 1200 different cases. For each case the
length of protection (L) and volume of structure (V) required to satisfy the safety factors mentioned previously were estimated for the input values, namely, the upstream cutoff depth (S1), the downstream cutoff depth (S2), the foundation width (B), the angle of inclination of the upstream cutoff (Ɵ1) and the angle of inclination of the downstream cutoff (Ɵ2), H (differencehead), kr (degree of anisotropy) and D (depth of impervious layer). An ANN model was developed and verified using these cases input-output sets as its data base. A MatLAB code was written to perform a genetic algorithm optimization modeling coupled with this ANN model using a formulated optimization model. A sensitivity analysis was done for selecting the crossover probability, the mutation probability and level,
the number of population, the position of the crossover and the weights distribution for all the terms of the objective function. Results indicate
that the most factors that affects. the optimum solution is the $ number of population required. The minimum value that gives stable global optimum solution of this parameter is (30000) while other variables have little effect on the optimum solution.
Background: Hypothyroidism is the most abundant thyroid disorder worldwide. For decades, levothyroxine was the main effective pharmacological treatment for hypothyroidism. A variety of factors can influence levothyroxine dose, such as genetic variations. Studying the impact of genetic polymorphisms on the administration of medications was risen remarkably. Different genetic variations were investigated that might affect levothyroxine dose requirements, especially the deiodinase enzymes. Deiodinase type 2 genetic polymorphisms’ impact on levothyroxine dose was studied in different populations.
Objective: To examine the association of the two single nucleotide polymorphism (SNP)s of deiodinase t
... Show MoreThe economical design of plate loaded by pressure can be obtained by using stiffeners instead of increasing the thickness of plate. The main subject of this work is to obtain the effect of stiffener height on the maximum stress in the plate subjected to pressure load. Different plate-stiffener sets are selected to find the effects of stiffener thickness, plate dimensions and pressure, on the optimum stiffener height. The models under consideration are square plates clamped rigidly from four edges. Finite Element method is used to analyze 160 different models by using the Finite Element software package ANSYS version 11. Another analysis method based on maximum stress equation is used to analyze 30 models. The graphical comparison of results
... Show MoreAn adaptive nonlinear neural controller to reduce the nonlinear flutter in 2-D wing is proposed in the paper. The nonlinearities in the system come from the quasi steady aerodynamic model and torsional spring in pitch direction. Time domain simulations are used to examine the dynamic aero elastic instabilities of the system (e.g. the onset of flutter and limit cycle oscillation, LCO). The structure of the controller consists of two models :the modified Elman neural network (MENN) and the feed forward multi-layer Perceptron (MLP). The MENN model is trained with off-line and on-line stages to guarantee that the outputs of the model accurately represent the plunge and pitch motion of the wing and this neural model acts as the identifier. Th
... Show MoreRA Ali, LK Abood, Int J Sci Res, 2017 - Cited by 2
The reality of the field of construction projects in Iraq refers to needing for the development of performance in order to improve quality and reduce defects and errors and to control the time and cost, so there is needing for the application of effective methods in this area, one of the methods that can be applied in this area is the manner of Six Sigma. This research aims to enhance the performance and quality improvement for the construction projects by improving performance in the work of the implementation of the concrete structure depending on the Six Sigma methodology, and for the purpose of achieving the aim of the research, the researcher firstly depends on the theoretical study that include the concepts of qual
... Show MoreIn earthquake engineering problems, uncertainty exists not only in the seismic excitations but also in the structure's parameters. This study investigates the influence of structural geometry, elastic modulus, mass density, and section dimension uncertainty on the stochastic earthquake response of a multi-story moment resisting frame subjected to random ground motion. The North-south component of the Ali Gharbi earthquake in 2012, Iraq, is selected as ground excitation. Using the power spectral density function (PSD), the two-dimensional finite element model of the moment resisting frame's base motion is modified to account for random ground motion. The probabilistic study of the moment resisting frame structure using stochastic fin
... Show MoreThe Pulse Coupled Oscillator (PCO) has attracted substantial attention and widely used in wireless sensor networks (WSNs), where it utilizes firefly synchronization to attract mating partners, similar to artificial occurrences that mimic natural phenomena. However, the PCO model might not be applicable for simultaneous transmission and data reception because of energy constraints. Thus, an energy-efficient pulse coupled oscillator (EEPCO) has been proposed, which employs the self-organizing method by combining biologically and non-biologically inspired network systems and has proven to reduce the transmission delay and energy consumption of sensor nodes. However, the EEPCO method has only been experimented in attack-free networks without
... Show MoreThe efficiency evaluation of the railway lines performance is done through a set of indicators and criteria, the most important are transport density, the productivity of enrollee, passenger vehicle production, the productivity of freight wagon, and the productivity of locomotives. This study includes an attempt to calculate the most important of these indicators which transport density index from productivity during the four indicators, using artificial neural network technology. Two neural networks software are used in this study, (Simulnet) and (Neuframe), the results of second program has been adopted. Training results and test to the neural network data used in the study, which are obtained from the international in
... Show More