A model using the artificial neural networks and genetic algorithm technique is developed for obtaining optimum dimensions of the foundation length and protections of small hydraulic structures. The procedure involves optimizing an objective function comprising a weighted summation of the state variables. The decision variables considered in the optimization are the upstream and downstream cutoffs lengths and their angles of inclination, the foundation length, and the length of the downstream soil protection. These were obtained for a given maximum difference in head, depth of impervious layer and degree of anisotropy. The optimization carried out is subjected to constraints that ensure a safe structure against the uplift pressure force and sufficient protection length at the downstream side of the structure to overcome an excessive exit gradient. The Geo-studio software was used to analyze 1200 different cases. For each case the
length of protection (L) and volume of structure (V) required to satisfy the safety factors mentioned previously were estimated for the input values, namely, the upstream cutoff depth (S1), the downstream cutoff depth (S2), the foundation width (B), the angle of inclination of the upstream cutoff (Ɵ1) and the angle of inclination of the downstream cutoff (Ɵ2), H (differencehead), kr (degree of anisotropy) and D (depth of impervious layer). An ANN model was developed and verified using these cases input-output sets as its data base. A MatLAB code was written to perform a genetic algorithm optimization modeling coupled with this ANN model using a formulated optimization model. A sensitivity analysis was done for selecting the crossover probability, the mutation probability and level,
the number of population, the position of the crossover and the weights distribution for all the terms of the objective function. Results indicate
that the most factors that affects. the optimum solution is the $ number of population required. The minimum value that gives stable global optimum solution of this parameter is (30000) while other variables have little effect on the optimum solution.
Researchers have increased interest in recent years in determining the optimum sample size to obtain sufficient accuracy and estimation and to obtain high-precision parameters in order to evaluate a large number of tests in the field of diagnosis at the same time. In this research, two methods were used to determine the optimum sample size to estimate the parameters of high-dimensional data. These methods are the Bennett inequality method and the regression method. The nonlinear logistic regression model is estimated by the size of each sampling method in high-dimensional data using artificial intelligence, which is the method of artificial neural network (ANN) as it gives a high-precision estimate commensurate with the dat
... Show MoreIts well known that understanding human facial expressions is a key component in understanding emotions and finds broad applications in the field of human-computer interaction (HCI), has been a long-standing issue. In this paper, we shed light on the utilisation of a deep convolutional neural network (DCNN) for facial emotion recognition from videos using the TensorFlow machine-learning library from Google. This work was applied to ten emotions from the Amsterdam Dynamic Facial Expression Set-Bath Intensity Variations (ADFES-BIV) dataset and tested using two datasets.
Background: Klebsiella pneumoniae were considered as normal flora of skin, and intestine. It can cause damage to human lungs; the danger of this bacterium is related to exposure to the hospital surroundings. materials and methods: the detection of Klebsiella pneumoniae on morphological and biochemical tests and then assured with VITEK 2 system. Resistance to antibiotics was determined by Kirby-Baeur method. And genotyping of IMP-1 in isolates was done by PCR technique, then biofilm formation was identified by Micro titer plate method. Results: The present study included a collecting of 50 specimens from different clinical specimens, (blood 40%, urine 30%, sputum 20%, wound infection 10%); 10 isolates were identified as K
... Show MoreInundation floodingmap aimedto find outearly warningsto avoidenvironmental damageandhumanin terms of theheight ofthe wave ofwater, speed time arrival, effects of inundation sideanddepth of the water/ distanceand reduce the impact of the flood wave after obtaining the process of collapse of the dam in the lower part of the river to the dam area. The study has been using a numerical model one-dimensional depends on the development of equations (Saint-Venant) so that parts of the river, any river channel main banks of the right and left treated as separate parts, that’s the difference in the characteristics of the hydraulic and engineering, along the line of the flow will take into account in each section of the sections and flow in the riv
... Show MoreThe world is witnessing a remarkable development in the use of technology, which has made it an essential means of investment, especially in the field of management, which provided many of the facilities experienced by the institutions, including improving revenues, shortening time and saving labor. Islamic investment technology as a successful means of management and we touched on the Zakat Foundation as an application model.
In this thesis, we study the topological structure in graph theory and various related results. Chapter one, contains fundamental concept of topology and basic definitions about near open sets and give an account of uncertainty rough sets theories also, we introduce the concepts of graph theory. Chapter two, deals with main concepts concerning topological structures using mixed degree systems in graph theory, which is M-space by using the mixed degree systems. In addition, the m-derived graphs, m-open graphs, m-closed graphs, m-interior operators, m-closure operators and M-subspace are defined and studied. In chapter three we study supra-approximation spaces using mixed degree systems and primary object in this chapter are two topological
... Show MoreThe inverse kinematics of redundant manipulators has infinite solutions by using conventional methods, so that, this work presents applicability of intelligent tool (artificial neural network ANN) for finding one desired solution from these solutions. The inverse analysis and trajectory planning of a three link redundant planar robot have been studied in this work using a proposed dual neural networks model (DNNM), which shows a predictable time decreasing in the training session. The effect of the number of the training sets on the DNNM output and the number of NN layers have been studied. Several trajectories have been implemented using point to point trajectory planning algorithm with DNNM and the result shows good accuracy of the end
... Show More