The performance of sewage pumps stations affected by many factors through its work time which produce undesired transportation efficiency. This paper is focus on the use of artificial neural network and multiple linear regression (MLR) models for prediction the major sewage pump station in Baghdad city. The data used in this work were obtained from Al-Habibia sewage pump station during specified records- three years in Al-Karkh district, Baghdad. Pumping capability of the stations was recognized by considering the influent input importance of discharge, total suspended solids (TSS) and biological oxygen demand (BOD). In addition, the chemical oxygen demands (COD), pH and chloride (Cl). The proposed model performance has compared with the correlation coefficient (r). The suitable structure design of neural network model is examined through many trials, error, preparations and evaluation steps. Two prediction models of organic and sediment loading are presented. Result found that the estimating of the organic and sediment loading by ANN model could be successful. Moreover, results showed that influent discharge rate have more effect on organic and sediment loading predicting to other parameters.
A new, Simple, sensitive and accurate spectrophotometric methods have been developed for the determination of sulfanilamide (SNA) drug in pure and in synthetic sample. This method based on the reaction of sulfanilamide (SNA) with 1,2-napthoquinone-4-sulphonic acid (NQS) to form N-alkylamono naphthoquinone by replacement of the sulphonate group of the naphthoquinone sulphonic acid by an amino group. The colored chromogen shows absorption maximum at 455 nm. The optimum conditions of condensation reaction forms were investigated by: (1) univariable method, by optimizing the effect of experimental variables; (different bases, reagent concentration, borax concentration and reaction time), (2) central composite design (CCD) including
... Show MoreThe meniscus has a crucial function in human anatomy, and Magnetic Resonance Imaging (M.R.I.) plays an essential role in meniscus assessment. It is difficult to identify cartilage lesions using typical image processing approaches because the M.R.I. data is so diverse. An M.R.I. data sequence comprises numerous images, and the attributes area we are searching for may differ from each image in the series. Therefore, feature extraction gets more complicated, hence specifically, traditional image processing becomes very complex. In traditional image processing, a human tells a computer what should be there, but a deep learning (D.L.) algorithm extracts the features of what is already there automatically. The surface changes become valuable when
... Show MoreIn the current worldwide health crisis produced by coronavirus disease (COVID-19), researchers and medical specialists began looking for new ways to tackle the epidemic. According to recent studies, Machine Learning (ML) has been effectively deployed in the health sector. Medical imaging sources (radiography and computed tomography) have aided in the development of artificial intelligence(AI) strategies to tackle the coronavirus outbreak. As a result, a classical machine learning approach for coronavirus detection from Computerized Tomography (CT) images was developed. In this study, the convolutional neural network (CNN) model for feature extraction and support vector machine (SVM) for the classification of axial
... Show MoreSymmetric cryptography forms the backbone of secure data communication and storage by relying on the strength and randomness of cryptographic keys. This increases complexity, enhances cryptographic systems' overall robustness, and is immune to various attacks. The present work proposes a hybrid model based on the Latin square matrix (LSM) and subtractive random number generator (SRNG) algorithms for producing random keys. The hybrid model enhances the security of the cipher key against different attacks and increases the degree of diffusion. Different key lengths can also be generated based on the algorithm without compromising security. It comprises two phases. The first phase generates a seed value that depends on producing a rand
... Show MoreFor the purpose of determining the impact of three levels of nitrogen fertilizer (0, 60, and 120 kg.ha-1) and sulfur fertilizer (0, 40, and 60 kg.ha-1) on production and growth indicators (number of leaves, number of branches, chlorophyll pigments, and fresh and dry weights), a field experiment was carried out during the winter season (2021/2022) in the fields of Al-Diwaniyah Province, Ministry of Agriculture, Diwaniyah Agriculture Directorate, Al-Nouriyah Forest Division. Means were compared using the least significant difference test (LSD) at a 0.05 level of probability. In a factorial experiment employing a wholly randomized block design wi
Self-repairing technology based on micro-capsules is an efficient solution for repairing cracked cementitious composites. Self-repairing based on microcapsules begins with the occurrence of cracks and develops by releasing self-repairing factors in the cracks located in concrete. Based on previous comprehensive studies, this paper provides an overview of various repairing factors and investigative methodologies. There has recently been a lack of consensus on the most efficient criteria for assessing self-repairing based on microcapsules and the smart solutions for improving capsule survival ratios during mixing. The most commonly utilized self-repairing efficiency assessment indicators are mechanical resistance and durab
... Show More