In this study, a different design of passive air Solar Chimney(SC)was tested by installing it in the south wall of insulated test room in Baghdad city. The SC was designed from vertical and inclined parts connected serially together, the vertical SC (first part) has a single pass and Thermal Energy Storage Box Collector (TESB (refined paraffin wax as Phase Change Material(PCM)-Copper Foam Matrix(CFM))), while the inclined SC was designed in single pass, double passes and double pass with TESB (semi refined paraffin wax with copper foam matrix) with selective working angle ((30o, 45o and 60o). A computational model was employed and solved by Finite Volume Method (FVM) to simulate the air induced through the test room by SC effect. The governing equation of Computational Fluid Dynamic (CFD) model was developed by the effective heat capacity method equation to describe the heat storage and release from PCM-CFM. Practical and computational Results referred to increase in thermal conductivity of the paraffin wax that supported by CFM than 10 times, while the ventilation effect is still active for hours after sun set amount. The maximum ventilation mass flow rate with TESB collector was 36.651 kg/hr., when the overall discharge coefficient equals 0.371. Also, the experimental results referred to the best working angle range 45~60o, while the highest approaching temperature (between air and collector) was appeared for the double passes flat plate collector. Results gave higher heat storage efficiency 47% when the maximum solar radiation 780 W/m2 at 12.00 pm, and the energy summation through duration of charging time was 18460 kJ. Double passes SC at 60o angle presented the highest efficiency with value approaching to 73%, while TESB collector efficiency depicted highest efficiency value 70% at 12:00 pm.
Occupy public investment spending, a great deal of attention since the thirties of the last century, to play important role in economic and social development process and therefore most of the countries are trying different degree of economic development to the completion of the largest amount of public investment, especially in infrastructure, which is one of the pillars essential to economic development, and in order to maximize utilization of the completion of public investment should focus on achieving efficiency in completion.
The current reality of public projects in Iraq, indicating the absence of several key characteristics that must be provided if these proje
The present work presents a new experimental study of the enhancement of turbulent
convection heat transfer inside tubes for combined thermal and hydrodynamic entry length of one
popular “turbulator” (twisted tape with width slightly less than internal tube diameter) inserted for
fire tube boilers. Cylindrical combustion chamber was used to burn (1.6 to 7kg/h) fuel oil #2 to
deliver hot gases with ranges of Reynolds number (10500 to 21700), and (11400 to 24150) for both
empty and inserted tube respectively.A uniform wall temperature technique was used by keeping
approximately constant water temperature difference (25ºC) between inlet and exit cooling water in
parallel flow shell and tube heat exchanger. The test
Abstract. Silver, Indium Selenium thin film with a thickness (5001±30) nm, deposited by thermal evaporation methods at RT and annealing3temperature (Ta=400, 500 and 600) K on a substrate of glass to study structural and optical properties of thin films and on p-Si wafer to fabricate the AgInSe2/p-Si heterojunction solar cell. XRD analysis shows that the AgInSe2 (AIS) deposited film at RT and annealing3temperature (Ta=400, 500 and 600) K have polycrystalline structure. The average grain size has been estimated from AFM images. The energy gap was estimated from the optical transmittance using a spectrometer type (UV.-Visible 1800 spectra photometer). From I-V characterization , the photovoltaic parameters such as, open-circuit voltage, short
... Show MoreCopper doped Zinc oxide and (n-ZnO / p-Si and n-ZnO: Cu / p-Si) thin films thru thickness (400±20) nm were deposited by thermal evaporation technique onto two substrates. The influence of different Cu percentages (1%,3% and 5%) on ZnO thin film besides hetero junction (ZnO / Si) characteristics were investigated, with X-ray diffractions examination supports ZnO films were poly crystal then hexagonal structural per crystallite size increase from (22.34 to 28.09) nm with increasing Cu ratio. The optical properties display exceptional optically absorptive for 5% Cu dopant with reduced for optically gaps since 3.1 toward 2.7 eV. Hall Effect measurements presented with all films prepared pure and doped have n-types conductive, with a ma
... Show MoreA numerical simulation is made on the thermal lensing effect in an laser diode end-pumped Nd:YAG laser rod. Based on finite element method (FEM), the laser rod temperature distribution is calculated and the focal length is deduced for a Gaussian and super-Gaussian pump beam profiles.
At the pump power of 20W, the highest temperature located at the center of end-pumped face was 345K, and the thermal lens focal length was 81.4mm along the x-z axis.
The results indicate that the thermal lensing effect sensitively depend on the pump power, waist radius of the pump beam and the pump distribution in a laser rod geometry.
Attention has recently been given to finding alternative and sustainable raw material sources for wood and metal adhesives, such as polyvinyl alcohol (PVA), corn starch (CS), arabic gum (AG), and dextrins (D). Modifying polymer dispersion using unique substances, such as modifying reactive elastomer liquid (EL) using PVA, CS, AG, or D results in sufficiently moisture-resistant adhesive joins. In the present study, the physical characteristics of EL/blended with the natural polymers PVA, CS, AG, and D, based on high-density fiberboard (HDF) wood and aluminum (Al) adhesives and coatings, were investigated and compared to those of pure EL. The EL was blended with PVA, CS, AG, or D at a ratio of 60/40 (w/w) to form EL/blends. The che
... Show MoreThis study is attempt to improve thermal isolation through measuring thermal conductivity composite of on polyester resin with fillers of (TiO2, ZnO, Acrylonitril, wood flour Coconut (Wf). The grain size of the fillers is 200 µm. The number of samples is (16) in addition to the virgin sample; these samples are prepared by cast molding method for polyester with filler volume fractions (5%, 10%, 15% and 20%). Shore hardness tests were used to measure the hardness and Lee disk method for thermal conductivity. The experimental results showed that the (20% ZnO) sample has the maximum value of thermal conductivity where (20% w.f) has minimum thermal conductivity .on the other hand (15% ZnO) sample give the maximum value of hardness where (20% w
... Show MoreSeries of new complexes of the type [M2 (L)Cl4 ] are prepared from the new ligand[N1 ,N4 -bis(benzo[d]thiazol-2- yl)succinamide (L) derived from ethan-1,2-dicarbonyl chloride and 2-aminobenzothiozole,where, M= Ni(ii), Cu(ii) and Zn(ii) alsocomplexes of mix-ligands, the type [M(L)(8-HQ)]Cl, where, M = Ni(ii), Cu(ii) and Zn(ii),8-HQ= 8-Hydroxyquinoline. Chemical forms are obtained from their 1 H, 13CNMR, Mass spectra (for (L)), FT-IR and U.V spectrum, melting point, molar conduct.Using flame (AA), % M is determined in the complexes.The content of C, H, N and S in the (L) and its complexes was specified. Magnetic susceptibility and thermal analysis (TGA) of prepared compounds were measured.The propose geometry for all complexes[M2 (L)Cl4 ] wa
... Show More