OpenStreetMap (OSM) represents the most common example of online volunteered mapping applications. Most of these platforms are open source spatial data collected by non-experts volunteers using different data collection methods. OSM project aims to provide a free digital map for all the world. The heterogeneity in data collection methods made OSM project databases accuracy is unreliable and must be dealt with caution for any engineering application. This study aims to assess the horizontal positional accuracy of three spatial data sources are OSM road network database, high-resolution Satellite Image (SI), and high-resolution Aerial Photo (AP) of Baghdad city with respect to an analogue formal road network dataset obtained from the Mayoralty of Baghdad (MB). The methodology of, U.S. National Standard Spatial Data Accuracy (NSSDA) was applied to measure the degree of agreement between each data source and the formal dataset (MB) in terms of horizontal positional accuracy by computing RMSE and NSSDA values. The study concluded that each of the three data sources does not agree with the MB dataset in both study sites AL-Aadhamiyah and AL-Kadhumiyah in terms of positional accuracy.
The achievements of the art that we know today are questioned in motives that differ from what art knew before, including dramatic artistic transformations, which he called modern art.
In view of the enormity of such a topic, its ramifications and its complexity, it was necessary to confine its subject to the origin of the motives of the transformations of its first pioneers, and then to stand on what resulted from that of the data of vision in composition and drawing exclusively, and through exploration in that, we got to know the vitality of change from the art of its time.
And by examining the ruling contemporary philosophical concepts and their new standards and their epistemological role in contemporary life, since they includ
This paper presents a hybrid approach for solving null values problem; it hybridizes rough set theory with intelligent swarm algorithm. The proposed approach is a supervised learning model. A large set of complete data called learning data is used to find the decision rule sets that then have been used in solving the incomplete data problem. The intelligent swarm algorithm is used for feature selection which represents bees algorithm as heuristic search algorithm combined with rough set theory as evaluation function. Also another feature selection algorithm called ID3 is presented, it works as statistical algorithm instead of intelligent algorithm. A comparison between those two approaches is made in their performance for null values estima
... Show MoreEntrepreneurial events are understood to be imperious in accelerating the economic development of nations owing to a large number of jobs it creates. Thus, both developed and developing countries understand the importance of entrepreneurship education to instil student interest in entrepreneurial action. This study investigates the moderating effect of entrepreneurship education (EEP) on the relationship between attitude (ATT), subjective norms (SNMS), and perceived behavioural control (PBC) towards entrepreneurship intention (EINT) of university undergraduate students. The study population covered 794 students from all the four faculties of Northwest University Kano, that were taught a compulsory entrepreneurship education course in their
... Show MoreThis paper presents the Extended State Observer (ESO) based repetitive control (RC) for piezoelectric actuator (PEA) based nano-positioning systems. The system stability is proved using Linear Matrix Inequalities (LMIs), which guarantees the asymptotic stability of the system. The ESObased RC used in this paper has the ability to eliminate periodic disturbances, aperiodic disturbances and model uncertainties. Moreover, ESO can be tuned using only two parameters and the model free approach of ESO-based RC, makes it an ideal solution to overcome the challenges of nano-positioning system control. Different types of periodic and aperiodic disturbances are used in simulation to demonstrate the effectiveness of the algorithm. The comparison studi
... Show MoreBinary relations or interactions among bio-entities, such as proteins, set up the essential part of any living biological system. Protein-protein interactions are usually structured in a graph data structure called "protein-protein interaction networks" (PPINs). Analysis of PPINs into complexes tries to lay out the significant knowledge needed to answer many unresolved questions, including how cells are organized and how proteins work. However, complex detection problems fall under the category of non-deterministic polynomial-time hard (NP-Hard) problems due to their computational complexity. To accommodate such combinatorial explosions, evolutionary algorithms (EAs) are proven effective alternatives to heuristics in solvin
... Show MoreEarly detection of brain tumors is critical for enhancing treatment options and extending patient survival. Magnetic resonance imaging (MRI) scanning gives more detailed information, such as greater contrast and clarity than any other scanning method. Manually dividing brain tumors from many MRI images collected in clinical practice for cancer diagnosis is a tough and time-consuming task. Tumors and MRI scans of the brain can be discovered using algorithms and machine learning technologies, making the process easier for doctors because MRI images can appear healthy when the person may have a tumor or be malignant. Recently, deep learning techniques based on deep convolutional neural networks have been used to analyze med
... Show MoreThe present paper concerns with the problem of estimating the reliability system in the stress – strength model under the consideration non identical and independent of stress and strength and follows Lomax Distribution. Various shrinkage estimation methods were employed in this context depend on Maximum likelihood, Moment Method and shrinkage weight factors based on Monte Carlo Simulation. Comparisons among the suggested estimation methods have been made using the mean absolute percentage error criteria depend on MATLAB program.