OpenStreetMap (OSM) represents the most common example of online volunteered mapping applications. Most of these platforms are open source spatial data collected by non-experts volunteers using different data collection methods. OSM project aims to provide a free digital map for all the world. The heterogeneity in data collection methods made OSM project databases accuracy is unreliable and must be dealt with caution for any engineering application. This study aims to assess the horizontal positional accuracy of three spatial data sources are OSM road network database, high-resolution Satellite Image (SI), and high-resolution Aerial Photo (AP) of Baghdad city with respect to an analogue formal road network dataset obtained from the Mayoralty of Baghdad (MB). The methodology of, U.S. National Standard Spatial Data Accuracy (NSSDA) was applied to measure the degree of agreement between each data source and the formal dataset (MB) in terms of horizontal positional accuracy by computing RMSE and NSSDA values. The study concluded that each of the three data sources does not agree with the MB dataset in both study sites AL-Aadhamiyah and AL-Kadhumiyah in terms of positional accuracy.
The objective of this study is to measure the impact of financial development on economic growth in Iraq over the period (2004-2018) by applying a fully corrected square model (FMOLS) Whereas, a set of variables represented by (credit-to-private ratio of GDP, the ratio of money supply in the broad sense of GDP, percentage of bank deposits from GDP) were chosen as indicators for measuring financial development and GDP to measure economic growth.
Major tests have been carried out, such as the stability test (Unite Root Test), the integration test (Cointegration). Results of the study showed that there
... Show MoreThis work focuses on the preparation of pure nanocrystalline SnO2 and SnO2:Cu thin films on cleaned glass substrates utilizing a sol-gel spin coating and chemical bath deposition (CBD) procedures. The primary aim of this study is to investigate the possible use of these thin films in the context of gas sensor applications. The films underwent annealing in an air environment at a temperature of 500 ◦C for duration of 60 minutes. The thickness of the film that was deposited may be estimated to be around 300 nm. The investigation included an examination of the structural, optical, electrical, and sensing characteristics, which were explored across various preparation circumstances, specifically focusing on varied
... Show MoreThe study aims to build a proposed training program for school leaders in the Sultanate of Oman on the planning practices of the Kaufman model in light of the needs and challenges of reality. It also aims to identify the challenges facing school leaders in practicing the stages of strategic planning. To achieve these objectives, the study adopted the descriptive approach due to its suitability to the nature of the study. A questionnaire was used to collect the needed data. The study sample included (225) individuals from school principals, their assistants and senior teachers in post-basic education in the Sultanate of Oman. After processing the data statistically, the study concluded that the reality of planning practices for school lea
... Show More
ABSTRACT
A field experiment was carried out in the fields of the college of agricultural engineering sciences, university of Baghdad during the fall season of 2021, in order to find out which of the cultivated genotypes of maize are efficient under nitrogen fertilization. The experiment was applied according to a RCBD (split plot design with three replications). The genotypes of experiment (Baghdad, 5018 and Sarah) and supplying three levels of nitrogen fertilizer, which are N1 (100 kg/ha), N2 (200 kg/ha) and N3 (300 kg/ha), the results of the statistical analysis are showed the superiority of the cultivar Sarah in the trait of number of days until 50% silking, chlorophyll
... Show MoreDeep learning (DL) plays a significant role in several tasks, especially classification and prediction. Classification tasks can be efficiently achieved via convolutional neural networks (CNN) with a huge dataset, while recurrent neural networks (RNN) can perform prediction tasks due to their ability to remember time series data. In this paper, three models have been proposed to certify the evaluation track for classification and prediction tasks associated with four datasets (two for each task). These models are CNN and RNN, which include two models (Long Short Term Memory (LSTM)) and GRU (Gated Recurrent Unit). Each model is employed to work consequently over the two mentioned tasks to draw a road map of deep learning mod
... Show MoreA dispersive liquid-liquid microextraction combines with UV-V is spectrophotometry for the preconcentration and determination of Mefenamic acid in pharmaceutical preparation was developed and introduced. The proposed method is based on the formation of charge transfer complexation between mefenamic acid and chloranil as an n-electron donor and a p-acceptor, respectively to form a violet chromogen complex measured at 542 nm. The important parameters affecting the efficiency of DLLME were evaluated and optimized. Under the optimum conditions, the calibration graphs of standard and drug, were ranged 0.03-10 µg mL-1. The limits of detection, quantification and Sandell's sensitivity were calculated. Good recoveries of MAF Std. and drug at 0.05,
... Show MoreIt is well known that drilling fluid is a key parameter for optimizing drilling operations, cleaning the hole, and managing the rig hydraulics and margins of surge and swab pressures. Although the experimental works represent valid and reliable results, they are expensive and time consuming. In contrast, continuous and regular determination of the rheological fluid properties can perform its essential functions during good construction. The aim of this study is to develop empirical models to estimate the drilling mud rheological properties of water-based fluids with less need for lab measurements. This study provides two predictive techniques, multiple regression analysis and artificial neural networks, to determine the rheological
... Show More