The efficiency of internal combustion engines (ICE) is usually about thirty percent of the total energy of the fuel. The residual energy is lost in the exhaust gas, the lubrication, and the cooling water in the radiators. Recently much of the researcher’s efforts have focused on taking advantage of wasted energy of the exhaust gas. Using a thermoelectric generator (TEG) is one of the promising ways. However, TEG depends entirely on the temperature difference, which may be offered by the exhaust muffler. An experimental test has been conducted to study the thermal performance of a different muffler internal design. The researchers resort to the use of lost energy in an ICE using TEG, which is one of the ways to take advantage of energy lost, which depends on the difference in temperature. TEG needs a heat exchanger and the muffler one of its types. In this work, four different types of mufflers will be designed and studied. The results showed that the thermal performances of the studied models compared to the empty cavity were as follows, the serial plate structure 56.11%, the central Box structure 52.73%, and the central curvature structure 29.61%. The highest thermal performance is on the serial plate structure relative to the other types.
This work presents an experimental study of heat transfer and flow of distilled water and metal oxide nanofluid Fe3O4-distilled water at concentrations of (φ = 0.3, 0.6, 0.9 %) by volume in a horizontal pipe with constant magnetic field. All the tests are carried out with Reynolds number range (2900-9820) and uniform heat flux (11262-19562 W/m2). The results show that, the nanofluid concentration and magnetic intensity increase, the Nusselt number increases. The maximum enhancement in Nusselt number with magnetic nanofluid is (5.4 %, 26.4 %, 42.7 %) for volume concentration (0.3, 0.6, 0.9 %) respectively. The enhancement is maximized with magnetic intensity (0.1, 0.2, 0.3 tesla) respectively to (43.9, 44
... Show MoreIn general, the importance of cluster analysis is that one can evaluate elements by clustering multiple homogeneous data; the main objective of this analysis is to collect the elements of a single, homogeneous group into different divisions, depending on many variables. This method of analysis is used to reduce data, generate hypotheses and test them, as well as predict and match models. The research aims to evaluate the fuzzy cluster analysis, which is a special case of cluster analysis, as well as to compare the two methods—classical and fuzzy cluster analysis. The research topic has been allocated to the government and private hospitals. The sampling for this research was comprised of 288 patients being treated in 10 hospitals. As t
... Show MoreThis paper is devoted to an inverse problem of determining discontinuous space-wise dependent heat source in a linear parabolic equation from the measurements at the final moment. In the existing literature, a considerably accurate solution to the inverse problems with an unknown space-wise dependent heat source is impossible without introducing any type of regularization method but here we have to determine the unknown discontinuous space-wise dependent heat source accurately using the Haar wavelet collocation method (HWCM) without applying the regularization technique. This HWCM is based on finite-difference and Haar wavelets approximation to the inverse problem. In contrast to othe
Low- and medium-carbon structural steel components face random vibration and dynamic loads (like earthquakes) in many applications. Thus a modification to improve their mechanical properties, essentially damping properties, is required. The present study focuses on improving and developing these properties, significantly dampening properties, without losing the other mechanical properties. The specimens used in the present study are structural steel ribbed bar ISO 6935 subjected to heating temperatures of (850, 950, and 1050) ˚C, and cooling schemes of annealing, normalizing, sand, and quenching was selected. The damping properties of the specimens were measured experimentally with the area under the curve for the loadi
... Show MoreThe current study was conducted on 504(Ros-308) broiler chicks reared in Animal farms belong to College of Agriculture, University of Baghdad during the period 28/9/2017- 9/11/2018 to determine the effect of ginseng additive on the performance of chicks. Results of study showed a significant effect (p≤0.05) of exposure period an Red blood cells, 3.56×106ml3 of blood was in bird, which exposure to 2hr at heat shock. In 42 day at age 106 ×38 ml3 of blood can noticed in the blood at birds, which exposure to 2hr in 21-42 days at 3 days of age. No significant effect at ginseng on blood cells. The results showed a significant effect (p≤0.05) of interaction on red blood cells at 21 and 42 days of age and the average cells between these ages
... Show MoreMany researchers used different methods in their investigations to enhance the heat transfer coefficient, one of these methods is using porous medium. Heat transfer process inside closed and open cavities filled with a fluid-saturated porous media has a considerable importance in different engineering applications, such as compact heat exchangers, nuclear reactors and solar collectors. So, the present paper comprises a review on natural, forced, and combined convection heat transfer inside a porous cavity with and without driven lid. Most of the researchers on this specific subject studied the effect of many parameters on the heat transfer and fluid field inside a porous cavity, like the angle of inclination, the presenc
... Show MoreThe cement slurry is a mixture of cement, water and additives which is established at the surface for injecting inside hole. The compressive strength is considered the most important properties of slurry for testing the slurry reliability and is the ability of slurry to resist deformation and formation fluids. Compressive strength is governed by the sort of raw materials that include additives, cement structure, and exposure circumstances. In this work, we use micro silica like pozzolanic materials. Silica fume is very fine noncrystalline substantial. Silica fume can be utilized like material for supplemental cementations for increasing the compressive strength and durability of cement. Silica fume has very fine particles size less
... Show MoreNon-orthogonal Multiple Access (NOMA) is a multiple-access technique allowing multiusers to share the same communication resources, increasing spectral efficiency and throughput. NOMA has been shown to provide significant performance gains over orthogonal multiple access (OMA) regarding spectral efficiency and throughput. In this paper, two scenarios of NOMA are analyzed and simulated, involving two users and multiple users (four users) to evaluate NOMA's performance. The simulated results indicate that the achievable sum rate for the two users’ scenarios is 16.7 (bps/Hz), while for the multi-users scenario is 20.69 (bps/Hz) at transmitted power of 25 dBm. The BER for two users’ scenarios is 0.004202 and 0.001564 for
... Show MoreArtificial roughness applied to a Solar Air Heater (SAH) absorber plate is a popular technique for increasing its total thermal efficiency (ηt−th). In this paper, the influence of geometrical parameters of V-down ribs attached below the corrugated absorbing plate of a SAH on the ηt−th was examined. The impacts of key roughness parameters, including relative pitch p/e (6–12), relative height e/D (0.019–0.043), angles of attack α (30–75°), and Re (1000–20,000), were examined under real weather conditions. The SAH ηt−th roughened by V-down ribs was predicted using an in-house developed conjugate heat-transfer numerical model. The maximum SAH ηt−th was shown to be 78.8% as predicted under the steady-state condition
... Show More