In this work, a new development of predictive voltage-tracking control algorithm for Proton Exchange Membrane Fuel Cell (PEMFCs) model, using a neural network technique based on-line auto-tuning intelligent algorithm was proposed. The aim of proposed robust feedback nonlinear neural predictive voltage controller is to find precisely and quickly the optimal hydrogen partial pressure action to control the stack terminal voltage of the (PEMFC) model for N-step ahead prediction. The Chaotic Particle Swarm Optimization (CPSO) implemented as a stable and robust on-line auto-tune algorithm to find the optimal weights for the proposed predictive neural network controller to improve system performance in terms of fast-tracking desired voltage and less energy consumption through investigating and comparing under random current variations with the minimum number of fitness evaluation less than 20 iterations.
The introduction of concrete damage plasticity material models has significantly improved the accuracy with which the concrete structural elements can be predicted in terms of their structural response. Research into this method's accuracy in analyzing complex concrete forms has been limited. A damage model combined with a plasticity model, based on continuum damage mechanics, is recommended for effectively predicting and simulating concrete behaviour. The damage parameters, such as compressive and tensile damages, can be defined to simulate concrete behavior in a damaged-plasticity model accurately. This research aims to propose an analytical model for assessing concrete compressive damage based on stiffness deterioration. The prop
... Show MoreThe quality of Global Navigation Satellite Systems (GNSS) networks are considerably influenced by the configuration of the observed baselines. Where, this study aims to find an optimal configuration for GNSS baselines in terms of the number and distribution of baselines to improve the quality criteria of the GNSS networks. First order design problem (FOD) was applied in this research to optimize GNSS network baselines configuration, and based on sequential adjustment method to solve its objective functions.
FOD for optimum precision (FOD-p) was the proposed model which based on the design criteria of A-optimality and E-optimality. These design criteria were selected as objective functions of precision, whic
... Show MoreIn this work the effect of choosing tri-circular tube section had been addressed to minimize the end effector’s error, a comparison had been made between the tri-tube section and the traditional square cross section for a robot arm, the study shows that for the same weight of square section and tri-tube section the error may be reduced by about 33%.
A program had been built up by the use of MathCAD software to calculate the minimum weight of a square section robot arm that could with stand a given pay load and gives a minimum deflection. The second part of the program makes an optimization process for the dimension of the cross section and gives the dimensions of the tri-circular tube cross section that have the same weight of
... Show MoreThis paper designed a fault tolerance for soft real time distributed system (FTRTDS). This system is designed to be independently on specific mechanisms and facilities of the underlying real time distributed system. It is designed to be distributed on all the computers in the distributed system and controlled by a central unit.
Besides gathering information about a target program spontaneously, it provides information about the target operating system and the target hardware in order to diagnose the fault before occurring, so it can handle the situation before it comes on. And it provides a distributed system with the reactive capability of reconfiguring and reinitializing after the occurrence of a failure.
In this paper the variable structure control theory is utilized to derive a discontinuous controller to the magnetic levitation system. The magnetic levitation system model is considered uncertain, which subjected to the uncertainty in system parameters, also it is open-loop unstable and strongly nonlinear. The proposed variable structure control to magnetic levitation system is proved, and the area of attraction is determined. Additionally, the chattering, which induced due to the discontinuity in control law, is attenuated by using a non-smooth approximate. With this approximation the resulted controller is a continuous variable structure controller with a determined steady state error according to the selected control
... Show MoreAn accurate assessment of the pipes’ conditions is required for effective management of the trunk sewers. In this paper the semi-Markov model was developed and tested using the sewer dataset from the Zublin trunk sewer in Baghdad, Iraq, in order to evaluate the future performance of the sewer. For the development of this model the cumulative waiting time distribution of sewers was used in each condition that was derived directly from the sewer condition class and age data. Results showed that the semi-Markov model was inconsistent with the data by adopting ( 2 test) and also, showed that the error in prediction is due to lack of data on the sewer waiting times at each condition state which can be solved by using successive conditi
... Show MoreAspect categorisation and its utmost importance in the eld of Aspectbased Sentiment Analysis (ABSA) has encouraged researchers to improve topic model performance for modelling the aspects into categories. In general, a majority of its current methods implement parametric models requiring a pre-determined number of topics beforehand. However, this is not e ciently undertaken with unannotated text data as they lack any class label. Therefore, the current work presented a novel non-parametric model drawing a number of topics based on the semantic association present between opinion-targets (i.e., aspects) and their respective expressed sentiments. The model incorporated the Semantic Association Rules (SAR) into the Hierarchical Dirichlet Proce
... Show MoreImaging by Ultrasound (US) is an accurate and useful modality for the assessment of gestational age (GA), estimation fetal weight, and monitoring the fetal growth during pregnancy, is a routine part of prenatal care, and that can greatly impact obstetric management. Estimation of GA is important in obstetric care, making appropriate management decisions requires accurate appraisal of GA. Accurate GA estimation may assist obstetricians in appropriately counseling women who are at risk of a preterm delivery about likely neonatal outcomes, and it is essential in the evaluation of the fetal growth and detection of intrauterine growth restriction. There are many formulas are used to estimate fetal GA in the world, but it's not specify fo
... Show More