Preferred Language
Articles
/
joe-707
Investigation of R134a Flow Boiling Heat Transfer and Pressure Drop in the Evaporator Test Section of Refrigeration System
...Show More Authors

This paper presents an experimental and theoretical analysis to investigate the two-phase flow boiling heat transfer coefficient and pressure drop of the refrigerant R-134a in the evaporator test section of the refrigeration system under different operating conditions. The test conditions considered are, for heat flux (13.7-36.6) kW/m2, mass flux (52-105) kg/m2.s, vapor quality (0.2-1) and saturation temperature (-15 to -3.7) ˚C. Experiments were carried out using a test rig for a 310W capacity refrigeration system, which is designed and constructed in the current work. Investigating of the experimental results has revealed that, the enhancement in local heat transfer coefficient for relatively higher heat flux 36.6 kW/m2 was about 38% compared to 13.7 kW/m2 at constant operating conditions. The enhancement in heat transfer coefficient was about 57% when the mass flux increased from 52 kg/m2.s to 105 kg/m2.s at constant test conditions. The enhancement in the heat transfer coefficient was about 64% when the saturation temperature increased from -8 to -3.7 at fixed refrigerant mass velocity and heat flux. The effect of mass velocity on pressure drop was relatively higher by about 27% than that for heat flux at specified test conditions. The comparison between the experimental and theoretical results has shown an acceptable agreement with an average deviation of 21%.

 

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Mon Jun 19 2023
Journal Name
Journal Of Engineering
MIXED CONVECTIVE AND RADIATIVE HEAT TRANSFER IN A HORIZONTAL CONCENTRIC AND ECCENTRIC CYLINDRICAL ANNULI
...Show More Authors

A numerical investigation has been performed to study the effect of eccentricity on unsteady state, laminar aiding mixed convection in a horizontal concentric and eccentric cylindrical annulus. The outer cylinder was kept at a constant temperature
while the inner cylinder was heated with constant heat flux. The study involved numerical solution of transient momentum (Navier-Stokes) and energy equation using finite difference method (FDM), where the body fitted coordinate system (BFC) was
used to generate the grid mesh for computational plane. The governing equations were transformed to the vorticity-stream function formula as for momentum equations and to the temperature and stream function for energy equation.
A computer progra

... Show More
View Publication Preview PDF
Crossref
Publication Date
Tue Jul 21 2020
Journal Name
Iop Conference Series: Materials Science And Engineering
Numerical Study of the Heat Transfer Behavior in Helical Microcoil Tube
...Show More Authors

View Publication
Scopus (1)
Scopus Crossref
Publication Date
Sat Sep 30 2023
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Swab – Surge Pressure Investigation, and the Influence Factors, Prediction and Calculation (Review)
...Show More Authors

Surge pressure is supplemental pressure because of the movement of the pipes downward and the swab pressure is the pressure reduction as a result of the drill string's upward movement. Bottom hole pressure is reduced because of swabbing influence. An Investigation showed that the surge pressure has great importance for the circulation loss problem produced by unstable processes in the management pressure drilling (MPD) actions. Through Trip Margin there is an increase in the hydrostatic pressure of mud that compensates for the reduction of bottom pressure due to stop pumping and/or swabbing effect while pulling the pipe out of the hole. This overview shows suggested mathematical/numerical models for simulating surge pressure problems ins

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Tue Mar 31 2020
Journal Name
International Journal Of Heat And Technology
Enhancement of Natural Convection Heat Transfer of Hybrid Design Heat Sink
...Show More Authors

View Publication
Scopus (3)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Sat May 01 2021
Journal Name
Proceedings Of The Thermal And Fluids Engineering Summer Conference
HEAT TRANSFER ENHANCEMENT IN PCM THERMAL ENERGY STORAGE VIA THE TRIPLEX TUBE HEAT EXCHANGER
...Show More Authors

Crossref (1)
Crossref
Publication Date
Sun Jan 30 2022
Journal Name
Heat Transfer
Theoretical and experimental investigation of a heat pipe heat exchanger for energy recovery of exhaust air
...Show More Authors

Heat pipes and two‐phase thermosyphon systems are passive heat transfer systems that employ a two‐phase cycle of a working fluid within a completely sealed system. Consequently, heat exchangers based on heat pipes have low thermal resistance and high effective thermal conductivity, which can reach up to the order of (105 W/(m K)). In energy recovery systems where the two streams should be unmixed, such as airconditioning systems of biological laboratories and operating rooms in hospitals, heat pipe heat exchangers (HPHEs) are recommended. In this study, an experimental and theoretical study was carried out on the thermal performance of an air‐to‐air HPHE filled with two refrigerants as working fluids, R22 and R407c. The heat pipe he

... Show More
Scopus (15)
Crossref (15)
Scopus Clarivate Crossref
Publication Date
Fri Jan 01 2021
Journal Name
International Journal Of Thermal Sciences
Experimental and numerical investigations of heat transfer enhancement in shell and helically microtube heat exchanger using nanofluids
...Show More Authors

View Publication
Scopus (51)
Crossref (48)
Scopus Clarivate Crossref
Publication Date
Sat Sep 30 2017
Journal Name
Al-khwarizmi Engineering Journal
Numerical Investigations on Heat Flow of Nanofluids in Ribs Tube Configurations
...Show More Authors

Abstract

In this paper presents two dimensional turbulent flow of different nanofluids and ribs configuration in a circular tube have been numerically investigation using FLUENT 6.3.26. Two samples of CuO and, ZnO nanoparticles with 2% v/v concentration and 40 nm as nanoparticle diameter combined with trapezoidalribs with aspect ratio of p/d=5.72 in a constant tube surface heat flux were conducted for simulation. The results showed that heat flow as Nusselt number for all cases raises with Reynolds number and volume fraction of nanofluid, likewise the results also reveal that ZnO with volume fractions of 2% in trapezoidal ribs offered highest Nusselt number at Reynolds number of Re= 30000.

Key

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Wed Jul 31 2019
Journal Name
Journal Of Engineering
Enhancing Heat Transfer in Tube Heat Exchanger by Inserting Discrete Twisting Tapes with Different Positions
...Show More Authors

Enhancement of heat transfer in the tube heat exchanger is studied experimentally by using discrete twisted tapes. Three different positions were selected for inserting turbulators along tube section (horizontal position by α= 00, inclined position by α= 45 0 and vertical position by α= 900). The space between turbulators was fixed by distributing 5 pieces of these turbulators with pitch ratio    PR = (0.44). Also, the factor of constant heat flux was applied as a boundary condition around the tube test section for all experiments of this investigation, while the flow rates were selected as a variable factor (Reynolds number values vary from 5000 to 15000). The results s

... Show More
View Publication Preview PDF
Crossref (3)
Crossref
Publication Date
Sat Nov 30 2019
Journal Name
Journal Of Engineering And Applied Sciences
Study the Effect of Heat Treatment and Pressure on Some Electrical Properties of Nano Polycarbonate
...Show More Authors

In the present research, the electrical properties which included the ac-conductivity (σac), loss tangent of dielectric (tan δ) and real dielectric constant (ε’) are studied for nano polycarbonate in different pressures and frequencies as a function of temperature these properties were studied at selective temperature gradients which are (RT-50-100-150-250)°C. The results of the study showed that the values of dielectric constant and dissipation factor increase with increasing pressure and temperature and decreases by increasing frequency. And the results of electrical conductivity showed that it increases with increasing temperature, pressure and frequency.

View Publication Preview PDF
Scopus