Euphrates River extends about 125 km within the study area located in Annassiriyah City, Dhi Qar Governorate, Iraq. The impact of the seven hydraulic structures on the discharge capacity of the Euphrates River needs to be considered. The main objectives of this research are to increase the discharge capacity of Euphrates River within Annassiriyah City during flood seasons and study the impact of these hydraulic structures on the river capacity by using HEC-RAS 5.0.3 software. Five scenarios were simulated to study the different current condition of Euphrates River within Annassiriyah City. Other additional four scenarios were implemented through river training to increase the river capacity to 1300 m³/s; it is the flood of 100 year return period. The results of the current condition showed that the maximum discharge capacity of Euphrates River within Annassiriyah City is just 300 m³/s. The results of applied improvements show that the capacity can reach 1300 m³/s when Al Chibayish Weir was hypothetically removed from the river system. Additionally, the river capacity will be reduced to 600 m³/s when Al Chibayish Weir is considered. It was concluded that the 100-year flood discharge cannot be achieved without removing Al Chibayish Weir from the river system.
The Isolated Combustion and Diluted Expansion (ICADE) internal combustion engine cycle combines the advantages of constant volume combustion of the Otto cycle with the high compression ratio of the Diesel cycle. This work studies the effect of isolated air mass (charge stratification) on the efficiency of the cycle; the analysis shows that the decrease of isolated air mass will increase the efficiency of the cycle and the large dilution air mass will quench all NOx forming reactions and reduce unburned hydrocarbons. Furthermore, the effect of Fuel / Air ratio on the efficiency shows that the increase of Fuel / Air ratio will increase efficiency of the cycle.
In the present work, a density functional theory (DFT) calculation to simulate reduced graphene oxide (rGO) hybrid with zinc oxide (ZnO) nanoparticle's sensitivity to NO2 gas is performed. In comparison with the experiment, DFT calculations give acceptable results to available bond lengths, lattice parameters, X-ray photoelectron spectroscopy (XPS), energy gaps, Gibbs free energy, enthalpy, entropy, etc. to ZnO, rGO, and ZnO/rGO hybrid. ZnO and rGO show n-type and p-type semiconductor behavior, respectively. The formed p-n heterojunction between rGO and ZnO is of the staggering gap type. Results show that rGO increases the sensitivity of ZnO to NO2 gas as they form a hybrid. ZnO/rGO hybrid has a higher number of vacancies that can b
... Show MoreZinc Oxide nanoparticles were prepared using pulsed laser ablation process from a pure zinc metal placed inside a liquid environment. The latter is composed of acetyltrimethylammonium bromide (CTAB) of 10−3 molarity and distilled water. A Ti:Sapphire laser of 800 nm wavelength, 1 kHz pulse repetition rate, 130 fs pulse duration is used at three values of pulse energies of 0.05 mJ, 1.11 mJ and 1.15 mJ. The evaluation of the optical properties for the obtained suspension was applied through ultraviolet–visible absorption spectroscopy test (UV/VIS). The result showed peak wavelengths at 210 nm, 211 nm and 213 nm for the three used pulse energies 0.05 mJ, 1.11 mJ and 1.15 mJ respectively. This indicates a blue shift,
... Show MoreThis study evaluated the structural changes of enamel treated by the Regenerate system and carbon dioxide (CO2) laser against acid challenge. Thirty human enamel slabs were prepared and assigned into three groups: Group I: untreated (control); Group II: treated with the Regenerate system; and Group III exposed to CO2 laser. All specimens were subjected to an acid challenge (pH 4.5–7.0) for 14 days. Specimens were evaluated and compared at 120 points using five Raman microspectroscopic peaks; the phosphate vibrations ν1, ν2, ν3, and ν4 at 960, 433, 1029, and 579 cm−1, respectively, and the carbonate at 1070 cm−1, followed by Vickers microhardness test. The ratio of carbonate to phosphate was correlated to the equivalent mic
... Show MoreThis study looked at how the synthetic chitosan-AgNPs-Doxorubicin-folic acid combination affected the A549 cell line in terms of cytotoxicity and anticancer activity. By reducing silver nitrate (AgNO3) and biodegradable chitosan, silver nanoparticles were biosynthesized. The produced conjugate was examined by using FT-IR spectroscopy, atomic force microscopy (AFM), and field emission scanning electron microscopy (FE-SEM). The cytotoxicity assay for the viability of A549 cells revealed that the combination of chitosan, AgNPs, doxorubicin, and folic acid decrease cell viability in a dose-determined by method over 48 hours, which direct to a dependent reduce in the activity of A549 cells. The mechanism analysis of the impacted living cells lea
... Show MoreIn this work the interaction of plasma jet with water and hydrogen peroxide liquids used for assisted teeth bleaching by plasma jet had been study. A homemade plasma jet system was used. The plasma jet supply by 15 W electrical power generated by high voltage power supply of 9.6 kV peak to peak and frequency of 33 kHz .this power supply generate high electric field on electrodes that would be enough to ionize the argon gas. Some important agents were study such as the effect of the Ar gas flow rates on the length of the plasma jet, the influence of plasma jet on some properties of water and two hydrogen peroxide concentrations 25 % and 30 % like pH, conductivity and liquid temperature for different exposure time. The liquids temperature
... Show More