Columns subjected to pure axial load rarely exist in practice. Reinforced concrete columns are usually subjected to combination of axial and lateral actions and deformations, caused by spatially‐complex loading patterns as during earthquakes causes lateral deflection that in turn affects the horizontal stiffness. In this study, a numerical model was developed in threedimensional nonlinear finite element and then validated against experimental results reported in the literatures,
to investigate the behavior of conventionally RC columns subjected to axial load and . lateral reversal cyclic loading. To achieve this goal, numerical analysis was conducted by using finite element program ABAQUS/Explicit. The variables considered in this study were axial load index, concrete compressive strength, column aspect ratio, longitudinal and transverse reinforcement ratios. According to numerical case studies, the results revealed that axial load index and longitudinal reinforcement ratio have the most impact on the column response. Also, increasing concrete compressive strength and reducing column aspect ratio resulted in increasing strength capacity of the column. Moreover, increasing lateral confinement by transverse reinforcement at the column ends increases the flexural strength of a flexure-controlled RC columns.
The behavior of externally prestressed composite beams under short term loading has been studied. A computer program developed originally by Oukaili to evaluate curvature is modified to evaluate the deflection of prestressed composite beam under flexural load. The analysis model based on the deformation compatibility of entire structure that allows to determine the full history of strain and stress distribution along cross section depth, deflection and stress increment in the external tendons .
The evaluation of curvatures for the composite beam involves iterations for computing the strains vectors at each node at any loading stage. The stress increment determined using equations depended on the member deflection at points of connecti
One of the artificial lightweight aggregates with a wide range of applications is Lightweight Expanded Clay Aggregate. Clay is utilized in the production of light aggregates. Using leftover clay from significant infrastructure development projects to manufacture lightweight aggregates has a favorable environmental impact. This research examines the expanded clay aggregate production process and the impact of processing parameters on its physical and mechanical qualities. It also looks at secondary components that can be used to improve the qualities of concrete with expanded clay aggregates. The effect of the quantity of expanded clay aggregate on the fresh, hardened, and durability qualities of concrete is also studied.
... Show MoreConventional concretes are almost unbending, and even a small amount of strain potential leaves them brittle. This lack of bendability is a major source of strain loss, and it has been the main goal behind the development of bendable concrete, often known with engineered ce ment composites, or ECC. This form of concrete has a lot more flexibility than regular concrete. Micromechanical polymer fibers are used to strengthen ECC. In most cases, ECC uses a 2% amount of thin, separated fibers. As a result, bendable concrete deforms but unlike traditional concrete, it does not crack. This study aims to include this kind of concrete, bendable concrete, which can be used to solve concrete problems. Karasta (CK) and Tasluja (CT) Portland Lime
... Show MoreThe disposal of the waste material is the main goal of this investigation by transformation to high-fineness powder and producing self-consolidation concrete (SCC) with less cost and more eco-friendly by reducing the cement weight, taking into consideration the fresh and strength properties. The reference mix design was prepared by adopting the European guide. Five waste materials (clay brick, ceramic, granite tiles, marble tiles, and thermostone blocks) were converted to high-fine particle size distribution and then used as 5, 10, and 15% weight replacements of cement. The improvement in strength properties is more significant when using clay bricks compared to other activated waste
Zinc Oxide is an indispensable substance in the field of dental treatment. It is used daily and intensively in all governmental and private dental clinics, leading to the disposal of very high concentrations of zinc with waste and eventually in landfill sites as a final destination for solid waste removal. This indicates the urgent need to investigate its behavior upon disposal due to the surrounding conditions. Approximately 4195 g of mixed dental waste samples were collected from (17) healthcare centers in Baghdad Al-Karkh. The leaching behavior of ZnO powder was investigated through batch reactors using makeup dental solid waste samples. The ZnO leaching was tested with 3 conditions; acidic, alkaline, and Ionic Streng
... Show MoreThis paper deals with the nonlinear large-angle bending dynamic analysis of curved beams which investigated by modeling wave’s transmission along curved members. The approach depends on the wave propagation in one-dimensional structural element using the method of characteristics. The method of characteristics (MOC) is found to be a suitable method for idealizing the wave propagation inside structural systems. Timoshenko’s beam theory, which includes transverse shear deformation and rotary inertia effects, is adopted in the analysis. Only geometrical non-linearity is considered in this study and the material is assumed to be linearly elastic. Different boundary conditions and loading cases are examined.
From the results obtai
... Show MoreThe electron mirror phenomenon has been explored to describe the behavior of a probing electron trajectory inside the chamber of scanning electron microscope (SEM). This investigation has been carried out by means of the modulated mirror plot curve technique. This method is based on expanding sample potential to a multipolar form to detect the actual distribution of the trapped charges. Actually an experimental result is used to guiding results of this work toward the accurate side. Results have shown that the influence of each type of multipolar arrangement (monopole, dipole, quadruple, octopole … etc.) mainly depends on the driving potential.
The determination of aerodynamic coefficients by shell designers is a critical step in the development of any projectile design. Of particular interest is the determination of the aerodynamic coefficients at transonic speeds. It is in this speed regime that the critical aerodynamic behavior occurs and a rapid change in the aerodynamic coefficients is observed. Two-dimensional, transonic, flow field computations over projectiles have been made using Euler equations which were used for solution with no special treatment required. In this work a solution algorithm is based on finite difference MacCormack’s technique for solving mixed subsonic-supersonic flow problem. Details of the asymmetrically located shock waves on the projectiles hav
... Show MoreBuried pipeline systems are commonly used to transport water, sewage, natural oil/gas and other materials. The beneficial of using geogrid reinforcement is to increase the bearing capacity of the soil and decrease the load transfer to the underground structures.
This paper deals with simulation of the buried pipe problem numerically by finite elements method using the newest version of PLAXIS-3D software. Rajkumar and Ilamaruthi's study, 2008 has been selected to be reanalyzed as 3D problem because it is containing all the properties needed by the program such as the modulus of elasticity, Poisson's ratio, angle of internal friction. It was found that the results
... Show More