Mobile-based human emotion recognition is very challenging subject, most of the approaches suggested and built in this field utilized various contexts that can be derived from the external sensors and the smartphone, but these approaches suffer from different obstacles and challenges. The proposed system integrated human speech signal and heart rate, in one system, to leverage the accuracy of the human emotion recognition. The proposed system is designed to recognize four human emotions; angry, happy, sad and normal. In this system, the smartphone is used to record user speech and send it to a server. The smartwatch, fixed on user wrist, is used to measure user heart rate while the user is speaking and send it, via Bluetooth, to the smartphone which in turn sends it to the server. At the server side, the speech features are extracted from the speech signal to be classified by neural network. To minimize the misclassification of the neural network, the user heart rate measurement is used to direct the extracted speech features to either excited (angry and happy) neural network or to the calm (sad and normal) neural network. In spite of the challenges associated with the system, the system achieved 96.49% for known speakers and 79.05% for unknown speakers
The feature extraction step plays major role for proper object classification and recognition, this step depends mainly on correct object detection in the given scene, the object detection algorithms may result with some noises that affect the final object shape, a novel approach is introduced in this paper for filling the holes in that object for better object detection and for correct feature extraction, this method is based on the hole definition which is the black pixel surrounded by a connected boundary region, and hence trying to find a connected contour region that surrounds the background pixel using roadmap racing algorithm, the method shows a good results in 2D space objects.
Keywords: object filling, object detection, objec
The agent-based modeling is currently utilized extensively to analyze complex systems. It supported such growth, because it was able to convey distinct levels of interaction in a complex detailed environment. Meanwhile, agent-based models incline to be progressively complex. Thus, powerful modeling and simulation techniques are needed to address this rise in complexity. In recent years, a number of platforms for developing agent-based models have been developed. Actually, in most of the agents, often discrete representation of the environment, and one level of interaction are presented, where two or three are regarded hardly in various agent-based models. The key issue is that modellers work in these areas is not assisted by simulation plat
... Show MoreThis paper presents a method to classify colored textural images of skin tissues. Since medical images havehighly heterogeneity, the development of reliable skin-cancer detection process is difficult, and a mono fractaldimension is not sufficient to classify images of this nature. A multifractal-based feature vectors are suggested hereas an alternative and more effective tool. At the same time multiple color channels are used to get more descriptivefeatures.Two multifractal based set of features are suggested here. The first set measures the local roughness property, whilethe second set measure the local contrast property.A combination of all the extracted features from the three colormodels gives a highest classification accuracy with 99.4
... Show MoreABSTRACT
Naproxen(NPX) imprinted liquid electrodes of polymers are built using polymerization precipitation. The molecularly imprinted (MIP) and non imprinted (NIP) polymers were synthesized using NPX as a template. In the polymerization precipitation involved, styrene(STY) was used as monomer, N,N-methylenediacrylamide (N,N-MDAM) as a cross-linker and benzoyl peroxide (BPO) as an initiator. The molecularly imprinted membranes and the non-imprinted membranes were prepared using acetophenone(AOPH) and di octylphathalate(DOP)as plasticizers in PVC matrix. The slopes and detection limits of the liquid electrodes ranged from)-18.1,-17.72 (mV/decade and )4.0 x 10-
... Show MoreQuantum key distribution (QKD) provides unconditional security in theory. However, practical QKD systems face challenges in maximizing the secure key rate and extending transmission distances. In this paper, we introduce a comparative study of the BB84 protocol using coincidence detection with two different quantum channels: a free space and underwater quantum channels. A simulated seawater was used as an example for underwater quantum channel. Different single photon detection modules were used on Bob’s side to capture the coincidence counts. Results showed that increasing the mean photon number generally leads to a higher rate of coincidence detection and therefore higher possibility of increasing the secure key rate. The secure key rat
... Show MoreAssessing water quality provides a scientific foundation for the development and management of water resources. The objective of the research is to evaluate the impact treated effluent from North Rustumiyia wastewater treatment plant (WWTP) on the quality of Diyala river. The model of the artificial neural network (ANN) and factor analysis (FA) based on Nemerow pollution index (NPI). To define important water quality parameters for North Al-Rustumiyia for the line(F2), the Nemerow Pollution Index was introduced. The most important parameters of assessment of water variation quality of wastewater were the parameter used in the model: biochemical oxygen demand (BOD), chemical oxygen dem
Attacking a transferred data over a network is frequently happened millions time a day. To address this problem, a secure scheme is proposed which is securing a transferred data over a network. The proposed scheme uses two techniques to guarantee a secure transferring for a message. The message is encrypted as a first step, and then it is hided in a video cover. The proposed encrypting technique is RC4 stream cipher algorithm in order to increase the message's confidentiality, as well as improving the least significant bit embedding algorithm (LSB) by adding an additional layer of security. The improvement of the LSB method comes by replacing the adopted sequential selection by a random selection manner of the frames and the pixels wit
... Show MoreThis paper proposes an on-line adaptive digital Proportional Integral Derivative (PID) control algorithm based on Field Programmable Gate Array (FPGA) for Proton Exchange Membrane Fuel Cell (PEMFC) Model. This research aims to design and implement Neural Network like a digital PID using FPGA in order to generate the best value of the hydrogen partial pressure action (PH2) to control the stack terminal output voltage of the (PEMFC) model during a variable load current applied. The on-line Particle Swarm Optimization (PSO) algorithm is used for finding and tuning the optimal value of the digital PID-NN controller (kp, ki, and kd) parameters that improve the dynamic behavior of the closed-loop digital control fue
... Show MoreAchieving reliable operation under the influence of deep-submicrometer noise sources including crosstalk noise at low voltage operation is a major challenge for network on chip links. In this paper, we propose a coding scheme that simultaneously addresses crosstalk effects on signal delay and detects up to seven random errors through wire duplication and simple parity checks calculated over the rows and columns of the two-dimensional data. This high error detection capability enables the reduction of operating voltage on the wire leading to energy saving. The results show that the proposed scheme reduces the energy consumption up to 53% as compared to other schemes at iso-reliability performance despite the increase in the overhead number o
... Show More