Mobile-based human emotion recognition is very challenging subject, most of the approaches suggested and built in this field utilized various contexts that can be derived from the external sensors and the smartphone, but these approaches suffer from different obstacles and challenges. The proposed system integrated human speech signal and heart rate, in one system, to leverage the accuracy of the human emotion recognition. The proposed system is designed to recognize four human emotions; angry, happy, sad and normal. In this system, the smartphone is used to record user speech and send it to a server. The smartwatch, fixed on user wrist, is used to measure user heart rate while the user is speaking and send it, via Bluetooth, to the smartphone which in turn sends it to the server. At the server side, the speech features are extracted from the speech signal to be classified by neural network. To minimize the misclassification of the neural network, the user heart rate measurement is used to direct the extracted speech features to either excited (angry and happy) neural network or to the calm (sad and normal) neural network. In spite of the challenges associated with the system, the system achieved 96.49% for known speakers and 79.05% for unknown speakers
Lasmiditan (LAS) was formulated as a nanoemulsion based in situ gel (NEIG)with the aim of improving its oral bioavailability via application intranasally. The solubility of LAS in oils, emulsifiers, and co-emulsifiers was determined to identify nanoemulsion (NE)components. Phase diagrams were constructed to identify the area of nanoemulsification. LAS NE was formulated using the spontaneous nanoemulsification method. Four NEs (F19, F24, F31, and F34) containing 7-15 % oleic acid (OA) as an oily phase, 40-55% labrasol (LR), and transcutol (TC) as emulsifier mixture at (1:1), (2:1), (3:1), and (1:2) ratio with 30-53 % (w/w) aqueous phase, having suitable optical transparency of 95–98%, globule size of 104-140 nm and polydisper
... Show MoretA novel synthesis procedure is presented for preparing triethanolamine-treated graphene nanoplatelets(TEA-GNPs) with different specific areas (SSAs). Using ultrasonication, the covalently functionalizedTEA-GNPs with different weight concentrations and SSAs were dispersed in distilled water to prepareTEA-GNPs nanofluids. A simple direct coupling of GNPs with TEA molecules is implemented to synthesizestable water-based nanofluids. The effectiveness of the functionalization procedure was validated by thecharacterization and morphology tests, i.e., FTIR, Raman spectroscopy, EDS, and TEM. Thermal conduc-tivity, dispersion stability, and rheological properties were investigated. Using UV–vis spectrometer, ahighest dispersion stability of 0.876
... Show MoreAbstract— The growing use of digital technologies across various sectors and daily activities has made handwriting recognition a popular research topic. Despite the continued relevance of handwriting, people still require the conversion of handwritten copies into digital versions that can be stored and shared digitally. Handwriting recognition involves the computer's strength to identify and understand legible handwriting input data from various sources, including document, photo-graphs and others. Handwriting recognition pose a complexity challenge due to the diversity in handwriting styles among different individuals especially in real time applications. In this paper, an automatic system was designed to handwriting recognition
... Show MoreBuilding a system to identify individuals through their speech recording can find its application in diverse areas, such as telephone shopping, voice mail and security control. However, building such systems is a tricky task because of the vast range of differences in the human voice. Thus, selecting strong features becomes very crucial for the recognition system. Therefore, a speaker recognition system based on new spin-image descriptors (SISR) is proposed in this paper. In the proposed system, circular windows (spins) are extracted from the frequency domain of the spectrogram image of the sound, and then a run length matrix is built for each spin, to work as a base for feature extraction tasks. Five different descriptors are generated fro
... Show MoreGlaucoma is a visual disorder, which is one of the significant driving reason for visual impairment. Glaucoma leads to frustrate the visual information transmission to the brain. Dissimilar to other eye illness such as myopia and cataracts. The impact of glaucoma can’t be cured; The Disc Damage Likelihood Scale (DDLS) can be used to assess the Glaucoma. The proposed methodology suggested simple method to extract Neuroretinal rim (NRM) region then dividing the region into four sectors after that calculate the width for each sector and select the minimum value to use it in DDLS factor. The feature was fed to the SVM classification algorithm, the DDLS successfully classified Glaucoma d