Preferred Language
Articles
/
joe-621
Experimental and Numerical Study Effect of Using Nanofluids in Perforated Plate Fin Heat Sink for Electronics Cooling
...Show More Authors

An experimental and numerical investigation of the effect of using two types of nanofluids with suspending of (Al2O3 and CuO) nanoparticles in deionized water with a volume fraction of (0.1% vol.), in addition to use three types of fin plate configurations of (smooth, perforated, and dimple plate) to study the heat transfer enhancement characteristics of commercial fin plate heat sink for cooling computer processing unit. All experimental tests under simulated conditions by using heat flux heater element with input power range of (5, 16, 35, 70, and 100 W). The experimental parameters calculated are such as water and nanofluid as coolant with Reynolds number of (7000, 8000, 9400 and 11300); the air is blown in the inlet duct across the heat sink with Reynolds number of (10500, 12300, 14200 and 16000). The distance fin-to-fin is kept constant at (2.00 mm), and the channel employed in this work has a square cross-section of (7 cm) inside. It was observed that the average effectiveness and Nusselt number of the nanofluids are higher compared with those of using conventional liquid cooling systems. However, the perforated fin plate showed higher air heat dissipation than the other configuration plate fin employed in this study. The experimental results were supported by numerical results which gave a good indication to heat transfer enhancement in studied ranges.

 

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Thu May 02 2013
Journal Name
Journal Of Engineering
Experimental and numerical analysis of piled raft foundation with different length of piles under static loads
...Show More Authors

In order to understand the effect of (length of pile / diameter of pile) ratio on the load carrying capacity and settlement reduction behavior of piled raft resting on loose sand, laboratory model tests were conducted on small-scale models. The parameters studied were the effect of pile length and the number of piles. The load settlement behavior obtained from the tests has been validated by using 3-D finite element in ABAQUS program, was adopted to understand the load carrying response of piled raft and settlement reduction. The results of experimental work show that the increase in (Lp/dp) ratio led to increase in load carrying capacity by piled raft from (19.75 to 29.35%), (14.18 to 28.87%) and (0 to 16.49%) , the maximum load carr

... Show More
Publication Date
Sun Oct 01 2017
Journal Name
Journal Of Mechanical Science And Technology
Optimization of a rectangular pin fin using elliptical perforations with different inclination angles
...Show More Authors

View Publication
Scopus (5)
Crossref (6)
Scopus Clarivate Crossref
Publication Date
Sat Dec 30 2017
Journal Name
International Journal Of Heat And Technology
Optimization of a rectangular pin fin using rectangular perforations with different inclination angles
...Show More Authors

View Publication
Scopus (6)
Crossref (3)
Scopus Crossref
Publication Date
Tue Aug 16 2016
Journal Name
International Journal Of Computer Applications
Experimental Study of CLARK-Y Smoothed Inverted Wing with Ground Effect
...Show More Authors

View Publication
Crossref (2)
Crossref
Publication Date
Wed May 31 2017
Journal Name
Journal Of Engineering
Design and Implementation of Classical Sliding Mode Controller for Ball and Plate System
...Show More Authors

Ball and Plate (B&P) system is a benchmark system in the control engineering field that has been used to verify many control methods. In this paper the design of a sliding mode . controller has been investigated and verified in real-time via implementation on a real ball and plate system hardware. The mathematical model has been derived and the necessary parameters have been measured. The sliding mode controller has been designed based on the obtained mathematical model. The resulting controller has been implemented using the Arduino Mega 2560 and a ball and plate system built completely from scratch. The Arduino has been programmed by the Arduino support target for Simulink. Three test signals has been used for verification purposes

... Show More
View Publication Preview PDF
Publication Date
Mon Apr 01 2019
Journal Name
Journal Of Engineering
Two Stage Evaporative Cooling of Residential Building Using Geothermal Energy
...Show More Authors

The weather of Iraq has longer summer season compared with other countries. The ambient temperature during this season reaches over 50 OC which makes the evaporative cooling system suitable for this climate. In present work, the two-stage evaporative cooling system is studied. The first stage is indirect evaporative cooling (IEC) represented by two heat exchangers with the groundwater flow rate (5 L/min). The second stage is direct evaporative cooling (DEC) which represents three pads with groundwater flow rates of (4.5 L/min). The experimental work was conducted in July, August, September, and October in Baghdad. Results showed that overall evaporative efficiency of the system (two coils with three pads each

... Show More
View Publication Preview PDF
Crossref (5)
Crossref
Publication Date
Thu Dec 01 2011
Journal Name
Journal Of Engineering
EFFECT OF COOLING RATE ON MECHANICAL PROPERTIES OF EUTECTIC AND HYPOEUTECTIC Al-Si ALLOYS
...Show More Authors

In this research the effect of cooling rate and mold type on mechanical properties of the eutectic
and hypoeutectic (Al-Si) alloys has been studied. The alloys used in this research work were (Al- 12.6%Si
alloy) and (Al- 7%Si alloy).The two alloys have been melted and poured in two types of molds with
different cooling rates. One of them was a sand mold and the other was metal mold. Mechanical tests
(hardness, tensile test and impact test) were carried out on the specimens. Also the metallographic
examination was performed.
It has been found that the values of hardness for the alloys(Al-12.6%Si and Al-7%Si) which poured in
metal mold is greater than the values of hardness for the same alloy when it poured in a heated

... Show More
View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Fri Dec 30 2011
Journal Name
Al-kindy College Medical Journal
Antinociceptive Effect of Silymarin in Experimental Animals
...Show More Authors

Background: Silymarin is a polyphenolic flavonoid
derived from milk thistle (Silybum marianum) that has
anti-inflammatory, cytoprotective, anticarcinogenic
and antioxidant effects. It has been used medicinally
to treat liver disorders including acute and chronic
viral hepatitis, toxin/drug induced hepatitis, and
alcoholic liver disease.
Objective: To evaluate the antinociceptive effect of
silymarin in experimental animal model of pain.
Methods: The efficacy and dose response effect of
silymarin (125, 250, and 500mg/kg) were assessed
against control using tail flick test in mice as a model
of nociceptive pain. In this model, all doses of
silymarin were given intraperitoneally 15 min before
immersi

... Show More
View Publication Preview PDF
Publication Date
Wed Jun 01 2016
Journal Name
Journal Of Engineering
Experimental and Simulation for the Effect of Partial Shading on Solar Panel Performance
...Show More Authors

Partial shading is one of the problems that affects the power production and the efficiency of photovoltaic module. A series of experimental work have been done of partial shading of   monocrystalline PV module; 50W, Isc: 3.1A, Voc: 22V with 36 cells in series is achieved. Non-linear power output responses of the module are observed by applying various cases of partial shading (vertical and horizontal shading of solar cells in the module). Shading a single cell (corner cell) has the greatest impact on output energy. Horizontal shading or vertical shading reduced the power from 41W to 18W at constant solar radiation 1000W/m2 and steady state condition. Vertical blocking a column

... Show More
View Publication Preview PDF
Publication Date
Wed Dec 01 2010
Journal Name
Al-khwarizmi Engineering Journal
Improvement of Surface Roughness Quality for Stainless Steel 420 Plate Using Magnetic Abrasive Finishing Method
...Show More Authors

     An experimental study was carried out to improve the surface roughness quality of the stainless steel 420 using magnetic abrasive finishing method (MAF). Four independent operation parameters were studied (working gap, coil current, feed rate, and table stroke), and their effects on the MAF process were introduced. A rotating coil electromagnet was designed and implemented to use with plane surfaces. The magnetic abrasive powder used was formed from 33%Fe and 67% Quartz of (250µm mesh size). The lubricant type SAE 20W was used as a binder for the powder contents. Taguchi method was used for designing the experiments and the optimal values of the selected parameters were found. An empirical equation representing the r

... Show More
View Publication Preview PDF