Preferred Language
Articles
/
joe-599
Experimental Study of Optimum Chilled Water Distribution Configuration in Air Conditioning Terminal Unit Using RSM Technique
...Show More Authors

The distribution of chilled water flow rate in terminal unit is an important factor used to evaluate the performance of central air conditioning unit. A prototype of A/C unit has been made, which contains three terminal units with a complete set of accessories (3-way valve, 2-way valve, and sensors) to study the effect of the main parameters, such as total water flow rate and chilled water supply temperature with variable valve opening. In this work, 40 tests were carried out. These tests were in two groups, 20 test for 3-way valve case and 20 test for 2-way valve case. These tests were performed at three levels of valve opening, total water flow rate and water supply temperature according to the design matrices established by Design of Experiment (DOE) software 'version 7' with Response surface methodology (RSM) technique. The model was conducted for each case of total heat rate, then checked statistically for adequacy by Analysis of variance (ANOVA), and found good with 95% confidence level. The results showed that the water supply temperature has a significant effect on the total heat rate of two cases. It was found that the optimum solution for maximum total heat rate and minimum flow deviation represented by standard deviation was obtained at 10°C water supply temperature, 5.5 l/min total water flow rate and 70% valve opening. The total heat rate and standard deviation were (890.249 Watt), (0.000513), respectively in three-way valve case and (743.155 Watt), (0.00277), respectively in two-way valve case. Finally, the predicted and experimental results of total heat rate and standard deviation were in agreement with a maximum error of 6.6 % in three-way valve case and 1.4% in two-way valve case.

 

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sun Mar 29 2020
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Photocatalytic Degradation of Reactive Yellow Dye in Wastewater using H2O2/TiO2/UV Technique
...Show More Authors

In the present study, advanced oxidation treatment, the TiO2 /UV/H2O2  process was applied to decolorisation of the reactive yellow dyes in aqueous solution. The UV radiation was carried out with a 6 W low-pressure mercury lamp. The rate of color removal was studied by measuring the absorbency at a characteristic wavelength. The effects of H2O2 dosage, dye initial concentration and pH on decolorisation kinetics in the batch photoreactor were investigated. The highest decolorisation rates were observed (98.8) at pH range between 3 and 7. The optimal levels of H2O2 needed for the process were examined. It appears that high levels of H2O2 could reduce decolori

... Show More
View Publication Preview PDF
Crossref (22)
Crossref
Publication Date
Wed Oct 25 2023
Journal Name
2023 Ieee 8th International Conference On Engineering Technologies And Applied Sciences (icetas)
Vibration Characteristics of Perforated Plate using Experimental and Numerical Approaches
...Show More Authors

Vibration analysis plays a vital role in understanding and analyzing the behavior of the structure. Where, it can be utilized from this analysis in the design process of the structures in different engineering applications, check the quality and safety of the structure under different working conditions. This work presents experimental measurements and numerical solutions to an out of plane vibration of a rectangular plate with a circular hole. Free edges rectangular plates with different circular holes diameters were studied. The effects of hole location on the plate natural frequencies were also investigated. A finite element modeling (using ANSYS Software) has been used to analyze the vibration characteristics of the plates. A good agree

... Show More
View Publication
Scopus Crossref
Publication Date
Fri Jun 29 2018
Journal Name
Journal Of Engineering
Improving Water Use Efficiency and Water Productivity for Okra Crop by using Subsurface Water Retention Technology
...Show More Authors

Utilizing the modern technologies in agriculture such as subsurface water retention techniques were developed to improve water storage capacities in the root zone depth. Moreover, this technique was maximizing the reduction in irrigation losses and increasing the water use efficiency. In this paper, a polyethylene membrane was installed within the root zone of okra crop through the spring growing season 2017 inside the greenhouse to improve water use efficiency and water productivity of okra crop. The research work was conducted in the field located in the north of Babylon Governorate in Sadat Al Hindiya Township seventy-eight kilometers from Baghdad city. Three treatments plots were used for the comparison using surface

... Show More
View Publication Preview PDF
Crossref (6)
Crossref
Publication Date
Sat Aug 01 2020
Journal Name
Heat Transfer
A parametric study of a photovoltaic panel with cylindrical fins under still and moving air conditions in Iraq
...Show More Authors

Scopus (7)
Crossref (7)
Scopus Clarivate Crossref
Publication Date
Wed Jan 01 2025
Journal Name
Ieee Access
Enhanced Spectral Efficiency in RIS-Assisted MIMO Systems Through Joint Precoding and RIS Configuration
...Show More Authors

View Publication
Scopus Clarivate Crossref
Publication Date
Wed Feb 01 2023
Journal Name
International Journal Of Revolution In Science And Humanity
Nonparametric Estimation of Failure Periods for Log Normal Distribution Using Bootstra
...Show More Authors

A non-parametric kernel method with Bootstrap technology was used to estimate the confidence intervals of the system failure function of the log-normal distribution trace data. These are the times of failure of the machines of the spinning department of the weaving company in Wasit Governorate. Estimating the failure function in a parametric way represented by the method of the maximum likelihood estimator (MLE). The comparison between the parametric and non-parametric methods was done by using the average of Squares Error (MES) criterion. It has been noted the efficiency of the nonparametric methods based on Bootstrap compared to the parametric method. It was also noted that the curve estimation is more realistic and appropriate for the re

... Show More
View Publication
Publication Date
Thu Jan 16 2020
Journal Name
Periodicals Of Engineering And Natural Sciences
Comparison of some reliability estimation methods for Laplace distribution using simulations
...Show More Authors

In this paper, we derived an estimator of reliability function for Laplace distribution with two parameters using Bayes method with square error loss function, Jeffery’s formula and conditional probability random variable of observation. The main objective of this study is to find the efficiency of the derived Bayesian estimator compared to the maximum likelihood of this function and moment method using simulation technique by Monte Carlo method under different Laplace distribution parameters and sample sizes. The consequences have shown that Bayes estimator has been more efficient than the maximum likelihood estimator and moment estimator in all samples sizes

Publication Date
Thu Apr 01 2021
Journal Name
Journal Of Bridge Engineering
Experimental Investigation of Curved-Soffit RC Bridge Girders Strengthened in Flexure Using CFRP Composites
...Show More Authors

View Publication
Crossref (10)
Crossref
Publication Date
Thu Sep 01 2022
Journal Name
Fuel
Experimental evaluation of Carbon Dioxide-Assisted Gravity Drainage process (CO2-AGD) to improve oil recovery in reservoirs with strong water drive
...Show More Authors

Crossref (31)
Crossref
Publication Date
Thu Aug 01 2024
Journal Name
Fuel
Experimental influence assessments of water drive and gas breakthrough through the CO2-assisted gravity drainage process in reservoirs with strong aquifers
...Show More Authors

Mature oil reservoirs surrounded with strong edge and bottom water drive aquifers experience pressure depletion and water coning/cresting. This laboratory research investigated the effects of bottom water drive and gas breakthrough on immiscible CO2-Assisted Gravity Drainage (CO2-AGD), focusing on substantial bottom water drive. The CO2-AGD method vertically separates the injected CO2 to formulate a gas cap and Oil. Visual experimental evaluation of CO2-AGD process performance was performed using a Hele-Shaw model. Water-wet sand was used for the experiments. The gas used for injection was pure CO2, and the “oleic” phase was n-decane with a negative spreading coefficient. The aqueous phase was deionized water. To evaluate the feasibilit

... Show More
View Publication
Scopus (11)
Crossref (11)
Scopus Clarivate Crossref