Preferred Language
Articles
/
joe-511
Direct Shear Behavior of Fiber Reinforced Concrete Elements
...Show More Authors

Improving the accuracy of load-deformation behavior, failure mode, and ultimate load capacity for reinforced concrete members subjected to in-plane loadings such as corbels, wall to foundation connections and panels need shear strength behavior to be included. Shear design in reinforced concrete structures depends on crack width, crack slippage and roughness of the surface of cracks.

This paper illustrates results of an experimental investigation conducted to investigate the direct shear strength of fiber normal strength concrete (NSC) and reactive powder concrete (RPC). The tests were performed along a pre-selected shear plane in concrete members named push-off specimens. The effectiveness of concrete compressive strength, volume fraction of steel fiber, and shear reinforcement ratio on shear transfer capacity were considered in this study. Furthermore, failure modes, shear stress-slip behavior, and shear stress-crack width behavior were also presented in this study.

Tests’ results showed that volume fraction of steel fiber and compressive strength of concrete in NSC and RPC play a major role in improving the shear strength of concrete. As expectedly, due to dowel action, the shear reinforcement is the predominant factor in resisting the shear stress. The shear failure of NSC and RPC has the sudden mode of failure (brittle failure) with the approximately linear behavior of shear stress-slip relationship till failure. Using RPC instead of NSC with the same amount of steel fibers in constructing the push-off specimen result in high shear strength. In NSC, shear strength influenced by the three major factors; crack surface friction, aggregate interlock and steel fiber content if present. Whereas, RPC has only steel fiber and cracks surface friction influencing the shear strength. Due to cementitious nature of RPC in comparisons with NSC, the RPC specimen shows greater cracks width.

It is observed that the Mattock model gives very satisfactory predictions when applied to the present test results with a range of parametric variations; ranging from 0 % to 0.5 % in steel fibers content; from 0 % to 0.53 % in transverse reinforcement ratio; from 15 to 105 MPa in compressive strength of concrete. While it gives a poor prediction for a specimen with 1% steel fiber.

 

View Publication Preview PDF
Quick Preview PDF
Publication Date
Mon Apr 01 2019
Journal Name
Journal Of Engineering
Effect of Thickness Variable on the Bending Analysis of Rotating Functionally polymer Graded Carbon Nanotube Reinforced Cylindrical Panels
...Show More Authors

This study offers the elastic response of the variable thickness functionally graded (FG) by single walled carbon nanotubes reinforced composite (CNTRC) moderately thick cylindrical panels under rotating and transverse mechanical loadings. It’s considered that, three kinds of distributions of carbon nanotubes which are uniaxial aligned in the longitudinal direction and two functionally graded in the transverse direction of the cylindrical panels. Depending on first order shear deformation theory (FSDT), the governing equations can be derived. The partial differential equations are solved by utilizing the technique of finite element method (FEM) with a program has been built by using FORTRAN 95. The results are calculat

... Show More
View Publication Preview PDF
Crossref (3)
Crossref
Publication Date
Sun May 31 2020
Journal Name
Buildings
Experimental and Numerical Study of Behaviour of Reinforced Masonry Walls with NSM CFRP Strips Subjected to Combined Loads
...Show More Authors

Near surface mounted (NSM) carbon fibers reinforced polymer (CFRP) reinforcement is one of the techniques for reinforcing masonry structures and is considered to provide significant advantages. This paper is composed of two parts. The first part presents the experimental study of brick masonry walls reinforced with NSM CFRP strips under combined shear-compression loads. Masonry walls have been tested under vertical compression, with different bed joint orientations 90° and 45° relative to the loading direction. Different reinforcement orientations were used including vertical, horizontal, and a combination of both sides of the wall. The second part of this paper comprises a numerical analysis of unreinforced brick masonry (URM) wa

... Show More
Scopus (17)
Crossref (13)
Scopus Clarivate Crossref
Publication Date
Sat Sep 01 2007
Journal Name
Al-khwarizmi Engineering Journal
Study the influence of the reinforced material geometrical shape on the internal stresses in the composite materials
...Show More Authors

In this paper the reinforced materials manufactured from steel continues fibers are used in Aluminum matrix to build a composite material. Most of researches concentrated on reinforced materials and its position in the matrix according to its size and distribution, and their effects on the magnitude of different kinds of the stresses, so this paper presents and concentrate on the geometrical shape of reinforced material and its effects on the internal stresses and strains on the composite strength using FEM as a method for analysis after loaded by certain force showing the deference magnitudes of stresses according to the different geometrical shapes of reinforced materials.

 

View Publication Preview PDF
Publication Date
Fri Oct 01 2021
Journal Name
Journal Of Engineering
Influence of Using Various Percentages of Slag on Mechanical Properties of Fly Ash-based Geopolymer Concrete
...Show More Authors

In order to implement the concept of sustainability in the field of construction, it is necessary to find an alternative to the materials that cause pollution by manufacturing, the most important of which is cement. Because factory wastes provide siliceous and aluminous materials and contain calcium such as fly ash and slag that are used in the production of high-strength geopolymer concrete with specifications similar to ordinary concrete, it was necessary for developing this type of concrete that is helping to reduce CO2 (dioxide carbon) in the atmosphere. Therefore, the aim of this study was to study the influence of incorporating various percentages of slag as a replacement for fly ash and the effect of sl

... Show More
View Publication Preview PDF
Crossref (11)
Crossref
Publication Date
Mon Jul 01 2019
Journal Name
Journal Of Physics: Conference Series
Determination of Radionuclides and Heavy Elements in the Rising Dust in the Small Side of Diwaniyah City due to the Movement of Wheels and Cars
...Show More Authors
Abstract<p>This research aims to determine the concentration of radionuclides in dust samples on the public streets of the small side of Diwaniyah city in Iraq as a result of movements of wheels and cars using the gamma spectra and high purity germanium detector (HPGe) with resolution of (2.3 keV) for energy (1.332 MeV) of cobalt <sup>60</sup>Co. Dust samples were collected from the streets Diwaniyah city with (26) samples prepared for measurement. The results of the specific activity concentration of Uranium-238, Thorium-232, Potassium-40 and Cesium-137 were (14.66 ± 0.950, 26.29 ± 2.431, 219.04 ± 15.150 and 11.49 ± 0.876) Bq/kg respectively. The radiation parameters Ra<sub>e</sub></p> ... Show More
View Publication
Scopus (7)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Wed Mar 29 2023
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Electrosorption of Hexavalent Chromium Ions by MnO2/Carbon Fiber Composite Electrode: Analysis and Optimization of the Process by Box-Behnken Design
...Show More Authors

A nano manganese dioxide (MnO2) was electrodeposited galvanostatically onto a carbon fiber (CF) surface using the simple method of anodic electrodeposition. The composite electrode was characterized by field emission scanning electron microscopy (FESEM), and X-ray diffraction (XRD). Very few studies investigated the efficiency of this electrode for heavy metals removal, especially chromium. The electrosorption properties of the nano MnO2/CF electrode were examined by removing Cr(VI) ions from aqueous solutions. NaCl concentration, pH, and cell voltage were studied and optimized using the Box-Behnken design (BDD) to investigate their effects and interactions on the electrosorption process. The results showed that the

... Show More
View Publication Preview PDF
Crossref
Publication Date
Thu Jan 22 2026
Journal Name
Journal Of Baghdad College Of Dentistry
The effect of thermocycling and debonding time on the shear bond strength of different orthodontic brackets bonded with light-emitting diode adhesive (In vitro study)
...Show More Authors

Background: Thermocycling simulates the temperature dynamics in the oral environment. This in vitro study done to measure and compare the effect of thermocycling on the shear bond strength of stainless steel and sapphire brackets bonded to human enamel teeth using light cured orthodontic adhesive and debonded at various time, and to measure adhesive remnant index after debonding. Materials and Methods: one-hundred-twenty extracted upper first premolars for orthodontic reason were used in this study; depending on weather thermocycled or not, the sample was divided into two main groups, then within each group 30 teeth were used for stainless-steel brackets (Bionic®) and for sapphire brackets (Pure®). Both groups were subdivided into three

... Show More
View Publication Preview PDF
Publication Date
Tue Jun 30 2020
Journal Name
Membranes
Experimental and Theoretical Analysis of Lead Pb2+ and Cd2+ Retention from a Single Salt Using a Hollow Fiber PES Membrane
...Show More Authors

The present work reports the performance of three types of polyethersulfone (PES) membrane in the removal of highly polluting and toxic lead Pb2+ and cadmium Cd2+ ions from a single salt. This study investigated the effect of operating variables, including pH, types of PES membrane, and feed concentration, on the separation process. The transport parameters and mass transfer coefficient (k) of the membranes were estimated using the combined film theory-solution-diffusion (CFSD), combined film theory-Spiegler-Kedem (CFSK), and combined film theory-finely-porous (CFFP) membrane transport models. Various parameters were used to estimate the enrichment factors, concentration polarization modulus, and Péclet number. The pH values signif

... Show More
View Publication
Scopus (31)
Crossref (26)
Scopus Clarivate Crossref
Publication Date
Tue Nov 01 2022
Journal Name
Journal Of Engineering
Finite Element Modeling of One-Way Recycled Aggregate Concrete Slabs Strengthened using Near-Surface Mounted CFRPs under Repeated Loading
...Show More Authors

This study offers numerical simulation results using the ABAQUS/CAE version 2019 finite element computer application to examine the performance, and residual strength of eight recycle aggregate RC one-way slabs. Six strengthened by NSM CFRP plates were presented to study the impact of several parameters on their structural behavior. The experimental results of four selected slabs under monotonic load, plus one slab under repeated load, were validated numerically. Then the numerical analysis was extended to different parameters investigation, such as the impact of added CFRP length on ultimate load capacity and load-deflection response and the impact of concrete compressive strength value on the structural performance of

... Show More
View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Tue Jun 01 2021
Journal Name
Iop Conf. Series: Materials Science And Engineering
Enhancing the mechanical properties of lightweight concrete using mono and hybrid fibers
...Show More Authors
Abstract<p>This investigation aims to study some properties of lightweight aggregate concrete reinforced by mono or hybrid fibers of different sizes and types. In this research, the considered lightweight aggregate was Light Expanded Clay Aggregate while the adopted fibers included hooked, straight, polypropylene, and glass. Eleven lightweight concrete mixes were considered, These mixes comprised of; one plain concrete mix (without fibers), two reinforced concrete mixtures of mono fiber (hooked or straight fibers), six reinforced concrete mixtures of double hybrid fibers, and two reinforced concrete mixtures of triple hybrid fibers. Hardened concrete properties were investigated in this study. G</p> ... Show More