Low incoming discharge upstream of Samarra-Al Tharthar System leads to sediment accumulation and forming islands, especially an island upstream of Al Tharthar Regulator. This island and the sedimentation threaten the stability of the structure and reduce the efficiency of the system. This study aims to hydraulically identify the sedimentation problem mentioned above, to find solutions of how to control the sediment problems, and to develop the capacity of
the system for 500 years return period flood of 15060 m3/s. Surface Water Modeling System (SMS10.1) with two dimensional depth average models (RMA-2) software were used to simulate and analyze the system. The results of analysis showed that the maximum permissible discharge through the system was 8250 m
3/s where the discharge from Samarra Barrage was 2400 m3/s to avoid flooding in Baghdad city. The water surface level could be lowered during constructing;
the new Al Tharthar Regulator expansion capacity of 7000 m3/s in the case of peak flood (15060 m3/s) to 68.51 m.a.m.s.l. upstream of Samarra Barrage by dredging the island and channel. On the other hand, during constructing the guide bank, and dredging the island and channel, the water surface elevation was 68.91 m.a.m.s.l. upstream of Samarra Barrage.
Objective: Evaluation the national standards for exposure to chemical materials and dusts in The State
Company for Drugs Industry in Samarra.
Methodology: A descriptive evaluation design is employed through the present study from 25th May 2011
to 30th November 2011 in order to evaluate the national standards for exposure chemical materials and dusts
in The State Company for Drugs Industry in Samarra. A purposive (non-probability) sample is selected for the
study which includes (110) workers from the State Company for Drugs Industry in Samarra. Data were
gathered through the workers` interviewed according to the nature of work that they perform. The evaluation
questionnaire comprised of three parts which include the w
Simplifying formulas that are used for calculations and design are the aim of researchers. For present work, the approach to distinguish the flow under sluice gate was conducted in a laboratory. The extensive experimental program was done to collect fifty-four data points for both free and submerged flow conditions. The data included different discharges, gate openings, flow depths at upstream as well as the flow depths represent a tail water and at a contracted section for downstream. The collected data are analyzed according to a problematic that may encounter in the field, to present a more straightforward (but with acceptable accurate) practical features equations and charts. Based on the proposed formulas, five meth
... Show MoreA submerged weir is a hydraulic structure utilized to control flow in canals and rivers. Water scarcity is a persistent issue in Iraq, especially during the dry season when irrigation withdrawals reduce downstream water levels in canals (Water is lost from irrigation canals due to seepage, evaporation, and vegetation growth). The final section of the Bani Hassan Canal experiences significant drops in water surface (WS) levels, negatively impacting irrigation efficiency. This study addresses that gap by investigating the use of submerged weirs to enhance water distribution and raise WS in the final 6 km segment of the canal. A one-dimensional (1D) hydraulic mode
One of the most important human diseases that need to be considered in terms of development of the medical engineering devices is cardiovascular disease which is a significant cause of death globally recently. Valvular heart disease is normally treated by restoring or altering heart valves with an artificial one. But the new prosthetic valve designs necessitate testing for durability estimate and failure method. It is significant to simulate the circulation system by the building of a pulse duplicator system. This study is stated by clarifying the parameter and implementation steps of the pulse duplicator system in which the different researchers have utilized the system and tried to explain the design steps of using this system wit
... Show MoreThe main challenge of military tactical communication systems is the accessibility of relevant information on the particular operating environment required for the determination of the waveform's ideal use. The existing propagation model focuses mainly on broadcasting and commercial wireless communication with a highs transceiver antenna that is not suitable for numerous military tactical communication systems. This paper presents a study of the path loss model related to radio propagation profile within the suburban in Kuala Lumpur. The experimental path loss modeling for VHF propagation was collected from various suburban settings for the 30-88 MHz frequency range. This experiment was highly affected by ecological factors and existing
... Show MoreThe research aims to improve operational performance through the application of the Holonic Manufacturing System (HMS) in the rubber products factory in Najaf. The problem was diagnosed with the weakness of the manufacturing system in the factory to meet customers' demands on time within the available resources of machines and workers, which led to time delays of Processing and delivery, increased costs, and reduced flexibility in the factory, A case study methodology used to identify the reality of the manufacturing system and the actual operational performance in the factory. The simulation was used to represent the proposed (HMS) by using (Excel 2010) based on the actual data and calculate the operational performance measures
... Show MoreA Geographic Information System (GIS) is a computerized database management system for accumulating, storage, retrieval, analysis, and display spatial data. In general, GIS contains two broad categories of information, geo-referenced spatial data and attribute data. Geo-referenced spatial data define objects that have an orientation and relationship in two or three-dimensional space, while attribute data is qualitative data that can be counted for recording and analysis. The main aim of this research is to reveal the role of GIS technology in the enhancement of bridge maintenance management system components such as the output results, and make it more interpretable through dynamic colour coding and more sophisticated visualization
... Show MoreThe interplay of species in a polluted environment is one of the most critical aspects of the ecosystem. This paper explores the dynamics of the two-species Lokta–Volterra competition model. According to the type I functional response, one species is affected by environmental pollution. Whilst the other degrades the toxin according to the type II functional response. All equilibrium points of the system are located, with their local and global stability being assessed. A numerical simulation examination is carried out to confirm the theoretical results. These results illustrate that competition and pollution can significantly change the coexistence and extinction of each species.
The present work aims to validate the experimental results of a new test rig built from scratch to evaluate the thermal behavior of the brake system with the numerical results of the transient thermal problem. The work was divided into two parts; in the first part, a three-dimensional finite-element solution of the transient thermal problem using a new developed 3D model of the brake system for the selected vehicle is SAIPA 131, while in the second part, the experimental test rig was built to achieve the necessary tests to find the temperature distribution during the braking process of the brake system. We obtained high agreement between the results of the new test rig with the numerical results based on the developed model of the brake
... Show More