Preferred Language
Articles
/
joe-432
Brackish Water Desalination Coupled With Wastewater Treatment and Electricity Generation
...Show More Authors

A new bio-electrochemical system was proposed for simultaneous removal of organic matters and salinity from actual domestic wastewater and synthetically prepared saline water, respectively. The performance of a three-chambered microbial osmotic fuel cell (MOFC) provided with forward osmosis (FO) membrane and cation exchange membrane (CEM) was evaluated with respect to the chemical oxygen demand (COD) removal from wastewater, electricity generation, and desalination of saline water. The MOFC wasinoculated with activated sludge and fueled with actual domestic wastewater. Results revealed that maximum removal efficiency of COD from wastewater, TDS removal efficiency from saline water, power density, and current density were 96%, 90%, 30.02 mW/m2, and 107.20 mA/m2, respectively.

 

 

View Publication Preview PDF
Quick Preview PDF
Publication Date
Sun Jun 01 2025
Journal Name
Chemical Engineering And Processing - Process Intensification
Wastewater treatment through a hybrid electrocoagulation and electro-Fenton process with a porous graphite air-diffusion cathode
...Show More Authors

View Publication
Scopus (5)
Crossref (4)
Scopus Clarivate Crossref
Publication Date
Tue Oct 01 2019
Journal Name
Journal Of Engineering
Carwash Wastewater Treatment by Electrocoagulation Using Aluminum Foil Electrodes
...Show More Authors

Large quantities of contaminated carwash wastewater are produced per day from carwash places. Extensively it contains large quantities of chemicals from detergents, oil, grease, heavy metals, suspended solids, types of hydrocarbons, and biological contents. A novel electrocoagulation treatment by foil electrodes was conducted to remove COD, turbidity, Total Dissolved Solids (TDS) from contaminated carwash wastewater and decrease its Electrical Conductivity (EC). A thin layer of aluminum foil is used as an electrode in this treatment process. The effects of different voltage and treatment times were studied. The best result was found at a voltage of 30 volts and treatment time 90 minute where the removal efficiency of COD

... Show More
View Publication Preview PDF
Crossref (8)
Crossref
Publication Date
Fri Jul 01 2016
Journal Name
Journal Of Engineering
Aluminum Rubbish as a Coagulant for Oily Wastewater Treatment
...Show More Authors

In this study an experimental work was done to study the possibility of using aluminum rubbish material as a coagulant to remove the colloidal particles from oily wastewater by dissolving this rubbish in sodium hydroxide solution. The experiments were carried out on simulated oily wastewater that was prepared at different oil concentrations and hardness levels (50, 250, 500, and 1000) ppm oil for (2000, 2500, 3000, and 3500) ppm CaCo3 respectively. The initial turbidity values were (203, 290, 770, and 1306) NTU, while the minimum values of turbidity that have been gained from the experiments in NTU units were (1.67, 1.95, 2.10, and 4.01) at best sodium aluminate dosages in milliliters (12, 20, 24, and 28) for

... Show More
View Publication Preview PDF
Publication Date
Sat Dec 31 2016
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Performance Study of Electrodialysis for Treatment Fuel Washing Wastewater
...Show More Authors

In this work, electrodialysis (ED) has been demonstrated to be appropriate technique for reducing the electrical conductivity of real wastewater from fuel washing unit, which has been previously treated by other electrochemical technology (electrocoagulation and electrooxidation).  A five cell electrodialysis stack, with an active membrane area of 60 cm2 per cell was employed. During a batch recirculation mode ED system, the effects of parameters such as electrical potential applied (6-18 V) and flow rate of streams (0.5-1.7 L/min.) on the performance of the total dissolved solids (TDS) separation and specific power consumption (SPC) were studied. The results indicate that the process of ED under potential (15 V) and flow

... Show More
View Publication Preview PDF
Publication Date
Fri Dec 30 2011
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Energy Generation from Static Water Head Developed By Forward Osmosis
...Show More Authors

In this work, the possibility of utilizing osmosis phenomenon to produce energy as a type of the renewable energy using Thin Film Composite Ultra Low Pressure membrane TFC-ULP was studied. Where by forward osmosis water passes through the membrane toward the concentrated brine solution, this will lead to raise the head of the high brine solution. This developed static head may be used to produce energy. The aim of the present work is to study the static head developed and the flux on the high brine water solution side when using forward and reverse osmosis membranes for an initial concentration range from 35-300 g/l for each type of membrane used at room temperature and pressure conditions, and finally calculating the maximum possible po

... Show More
View Publication Preview PDF
Publication Date
Fri Jan 01 2021
Journal Name
Environmental Engineering And Management Journal
TREATMENT OF DAIRY WASTEWATER BY ELECTROCOAGULATION AND ULTRASONIC-ASSISTED ELECTROCOAGULATION METHODS
...Show More Authors

View Publication
Crossref (6)
Crossref
Publication Date
Sun Mar 04 2012
Journal Name
Baghdad Science Journal
Oilfield Produced Water Management: Treatment, Reuse and Disposal
...Show More Authors

Produced water is accompanied with the production of oil and gas especially at the fields producing by water drive or water injection. The quantity of these waters is expected to be more complicated problem with an increasing in water cut which is expected to be 3-8 barrels water/produced barrel oil.Produced water may contain many constituents based on what is present in the subsurface at a particular location. Produced water contains dissolved solids and hydrocarbons (dissolved and suspended) and oxygen depletion. The most common dissolved solid is salt with concentrations range between a few parts per thousand to hundreds parts per thousand. In addition to salt, many produced waters also contain high levels of heavy metals like zinc, bari

... Show More
View Publication Preview PDF
Crossref (4)
Crossref
Publication Date
Mon Sep 01 2014
Journal Name
Al-khwarizmi Engineering Journal
Heterogeneous Photocatalytic Degradation for Treatment of Oil from Wastewater
...Show More Authors

In the present study, advanced oxidation process / heterogeneous photocatalytic process (UV/TiO2/Fenton) system was investigated to the treatment of oily wastewater. The present study was conducted to evaluate the effect of hydrogen peroxide concentration H2O2, initial amount of the iron catalyst Fe+2, pH, temperature, amount of TiO2 and the concentration of oil in the wastewater.  The removal efficiency for the system UV/TiO2/Fenton at optimal conditions and dosage (H2O2 = 400mg/L, Fe+2 = 40mg/L, pH=5, temperature =30oC, TiO2=75mg/L) for 1000mg/L load was found to be 77%.

Aluminum foil cover around the re

... Show More
View Publication Preview PDF
Publication Date
Sun Mar 01 2015
Journal Name
Journal Of Engineering
Treatment of Furfural Wastewater by (AOPs) Photo-Fenton Method
...Show More Authors

The objective of this study is to investigate the application of advanced oxidation processes (AOPs) in the treatment of wastewater contaminated with furfural. The AOPs investigated is the homogeneous photo-Fenton (UV/H2O2/Fe+2) process. The experiments were conducted by using cylindrical stainless steel batch photo-reactor. The influence of different variables: initial concentration of H2O2 (300-1300mg/L), Fe+2(20-70mg/L), pH(2-7) and initial concentration of furfural (50-300 mg/L) and their relationship with the mineralization efficiency were studied.

 Complete mineralization for the system UV/H2O2/Fe+2 was achieved at: initi

... Show More
View Publication Preview PDF
Publication Date
Sat Dec 31 2016
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Osmotic Membrane Bioreactor for Oily Wastewater Treatment using External & Internal Configurations
...Show More Authors

The present work aims to study the treatment of oily wastewater by means of forward osmosis membrane bioreactor process. Side stream (external) configuration and submerged (internal) configuration of osmotic membrane bioreactor were performed and investigated. The experimental work for each configuration was carried out continuously over 21 days. The flux behavior of forward osmosis membrane in an osmotic membrane bioreactor (OMBR) was investigated, using NaCl as the draw solution and CTA as FO membrane. The effect of mixed liquor suspended solids (MLSS) concentration and TDS accumulation of bioreactor on water flux and membrane fouling behaviors was detected. The accumulation and rejection of nutrients in the bioreactor (Nitrate, COD,

... Show More
View Publication Preview PDF