The study aims to predict Total Dissolved Solids (TDS) as a water quality indicator parameter at spatial and temporal distribution of the Tigris River, Iraq by using Artificial Neural Network (ANN) model. This study was conducted on this river between Mosul and Amarah in Iraq on five positions stretching along the river for the period from 2001to 2011. In the ANNs model calibration, a computer program of multiple linear regressions is used to obtain a set of coefficient for a linear model. The input parameters of the ANNs model were the discharge of the Tigris River, the year, the month and the distance of the sampling stations from upstream of the river. The sensitivity analysis indicated that the distance and discharge have the most significant affect on the predicted TDS concentrations. The results showed that a network with (8) hidden neurons was highly accurate in predicting TDS concentration. The correlation coefficient (r), root mean square error (RMSE) and mean absolute percentage error (MAPE) between measured data and model outputs were calculated as 0.975, 113.9 and 11.51%, respectively for testing data sets. Comparisons between final results of ANNs and multiple linear regressions (MLR) showed that the ANNs model could be successfully applied and provides high accuracy to predict TDS concentrations as a water quality parameter.
Differences in transversal sections and activities of geomorphological operations led to forming geomorphological shapes as river turns and river isles in watercourse in the area of study. The study showed three river turns that are Sindia turn with length 4723m, turn wave 3599 average width 267.6, Zanbour turn length 11374m, turn wave 7110 average width 307.5m,and Dojama turn with length 5876m, turn wave 4982m average width 313.4m. This difference is caused by the activity of erosion and sedimentation that led to the appearance of the length rivers turn.
The study showed that the turn of Dojama is the only corresponding turn, whereas the phenomena of corresponding never appeared in other turns in the area of study. The study also sho
An environmental study conducted on diatoms in Al Yusifiya river beyond its branching from Euphrates river. Four sites were selected along the river for the period from march 2013 to September 2013. The present study involved the measurement of physicochemical parameters, also the qualitative and quantities of diatoms. The studied parameters values ranged as follows: 19-44Cº and 16-30 Cº for air and water temperature respectively, 6.9-8.7, 595-1248 µS/cm, 6.4-8.0 mg/l for pH, electric conductivity and dissolved oxygen respectively. A total of 74 taxa were recorded for diatoms, where the pinnate diatom was the predominant and recorded 64 taxa while 10 taxa for centric diatoms. The total number of diatoms was 1197.55*104 cell /l. The tota
... Show MoreA solid Phase Extraction (SPE) followed by HPLC-UV method is described for the simultaneous quantitative determination of nine priority pollutant phenols : Phenol, 2- and 4-Nitrophenol, 2,4-Dimethylphenol, 2-, 2,4-Di-, 2,4,6-Tri-, and Penta- chlorophenol, 4 Chloro-3-methylphenol. The phenols were separated using a C-18 column with UV detector at wave length of 280nm. The Flow of mobile phase was isocratic consisted of 50:50 Acetonitrile: phosphate buffer pH=7.1, column temperature 45 C°, Flow Rate 0.7 ml/min. Calibration curves were linear (R2 = 0.9961-0.9995). The RSDs (1.301-5.805)%, LOD(39.1- 412.4) µg/L, LOQ(118.5-1250.8) µg/L, the Robustness (1.55-4.89), Ruggedness (2.82-4.00), Repeatability (2.1-4.95), Recoveries%
... Show MoreThe objective of this study is to evaluate the bacterial count and heavy metal concentration of river water on fish micronuclei. Fish and water samples are carried out in 1 May to 1 June 2013 from Tigris River. A total of fifty three fish sample are studied. The bacteriological quality of water showed that the total viable count is ranged from 150×103 to 352×103 cfu/ml and fecal coliform counts was 1250 cell/100ml during the study period. All the metals (Cu, Hg, Pb, and Zn) are within the normal limit, but Cd was slightly elevated in river water samples. The appearance of micronuclei in red blood cells of all fish species is detect , by recording a larger number of it, in ( Abu Alsomere , Hishne , Bannini Kaber al fam & Karkoor
... Show MoreIt is an established fact that substantial amounts of oil usually remain in a reservoir after primary and secondary processes. Therefore; there is an ongoing effort to sweep that remaining oil. Field optimization includes many techniques. Horizontal wells are one of the most motivating factors for field optimization. The selection of new horizontal wells must be accompanied with the right selection of the well locations. However, modeling horizontal well locations by a trial and error method is a time consuming method. Therefore; a method of Artificial Neural Network (ANN) has been employed which helps to predict the optimum performance via proposed new wells locations by incorporatin
1.
Embryonic Origin of Neural Tube Defects.
Insaf Jasim Mahmoud
2.
Etiology of Neural Tube Defectss.
Ali Abdul Razzak Obed
3.
Epidemiology of Neural Tube Defects in Iraq.
Mahmood Dhahir Al-Mendalawi
4.
Surgical Management of Neural Tube Defects.
Laith Thamer Al-Ameri
5.
Prevention of Neural Tube Defects in Iraq.
Mahmood Dhahir Al-Mendalawi
Iron is one of the abundant elements on earth that is an essential element for humans and may be a troublesome element in water supplies. In this research an AAN model was developed to predict iron concentrations in the location of Al- Wahda water treatment plant in Baghdad city by water quality assessment of iron concentrations at seven WTPs up stream Tigris River. SPSS software was used to build the ANN model. The input data were iron concentrations in the raw water for the period 2004-2011. The results indicated the best model predicted Iron concentrations at Al-Wahda WTP with a coefficient of determination 0.9142. The model used one hidden layer with two nodes and the testing error was 0.834. The ANN model coul
... Show MoreThe objective of this study is to apply Artificial Neural Network for heat transfer analysis of shell-and-tube heat exchangers widely used in power plants and refineries. Practical data was obtained by using industrial heat exchanger operating in power generation department of Dura refinery. The commonly used Back Propagation (BP) algorithm was used to train and test networks by divided the data to three samples (training, validation and testing data) to give more approach data with actual case. Inputs of the neural network include inlet water temperature, inlet air temperature and mass flow rate of air. Two outputs (exit water temperature to cooling tower and exit air temperature to second stage of air compressor) were taken in ANN.
... Show More