Preferred Language
Articles
/
joe-379
Stability and Dynamic Analysis of Laminated Composite Plates
...Show More Authors

Buckling and free vibration analysis of laminated rectangular plates with uniform and non uniform distributed in-plane compressive loadings along two opposite edges is performed using the Ritz method. Classical laminated plate theory is adopted. The static component of the applied in- plane loading are assumed to vary according to uniform, parabolic or linear distributions. Initially, the plate membrane problem is solved using the Ritz method; subsequently, using Hamilton’s variational principle, linear homogeneous algebraic equations in terms of unknown are generated, the set of linear algebraic equations can be solved as an Eigen-value problem. Buckling loads for laminated plates with different combinations of boundary conditions are obtained and their effect on the natural frequencies of plate are also investigated. The proposed method is verified by comparing results to data obtained by the finite element method (FEM) using ANSYS program, from experimental program and that obtained by other researchers. Analytical results are also presented to bring out the effects of aspect ratio, boundary conditions, lamination angle, and loading type on the critical buckling load and natural frequency.

 

 

View Publication Preview PDF
Quick Preview PDF
Publication Date
Fri Mar 01 2019
Journal Name
Al-khwarizmi Engineering Journal
Buckling and Pre Stressed Dynamics Analysis of Laminated Composite Plate with Different Boundary Conditions
...Show More Authors

Critical buckling and natural frequencies behavior of laminated composite thin plates subjected to in-plane uniform load is obtained using classical laminated plate theory (CLPT). Analytical investigation is presented using Ritz- method for eigenvalue problems of buckling load solutions for laminated symmetric and anti-symmetric, angle and cross ply composite plate with different elastic supports along its edges. Equation of motion of the plate was derived using principle of virtual work and solved using modified Fourier displacement function that satisfies general edge conditions. Various numerical investigation were studied to exhibit a convergence and accuracy of the present solution for considering some design parameters such as edge

... Show More
View Publication Preview PDF
Crossref
Publication Date
Thu Dec 01 2011
Journal Name
Journal Of Engineering
FREE VIBRATION ANALYSIS OF NOTCHED COMPOSITE LAMINATED CANTILEVER BEAMS
...Show More Authors

The present work divided into two parts, first the experimental side which included the
measuring of the first natural frequency for the notched and unnotched cantilever composite beams
which consisted of four symmetrical layers and made of Kevlar- epoxy reinforced. A numerical
study covers the effect of notches on the natural frequencies of the same specimen used in the
experimental part. The mathematical model for the beam contains two open edges on the upper
surface. The effect of the location of cracks relative to the restricted end, depth of cracks, volume
fraction of fibers and orientation of the fiber on the natural frequencies are explored. The results
were calculated using the known engineering program (ANSY

... Show More
View Publication Preview PDF
Crossref
Publication Date
Thu Dec 01 2011
Journal Name
Journal Of Engineering
OPTIMAL DESIGN OF MODERATE THICK LAMINATED COMPOSITE PLATES UNDER STATIC CONSTRAINTS USING REAL CODING GENETIC ALGORITHM
...Show More Authors

The objective of the current research is to find an optimum design of hybrid laminated moderate thick composite plates with static constraint. The stacking sequence and ply angle is required for optimization to achieve minimum deflection for hybrid laminated composite plates consist of glass and carbon long fibers reinforcements that impeded in epoxy matrix with known plates dimension and loading. The analysis of plate is by adopting the first-order shear deformation theory and using Navier's solution with Genetic Algorithm to approach the current objective. A program written with MATLAB to find best stacking sequence and ply angles that give minimum deflection, and the results comparing with ANSYS.

View Publication Preview PDF
Crossref
Publication Date
Sat Dec 01 2012
Journal Name
Journal Of Engineering
Buckling Analysis of Composite Plates under Thermal and Mechanical Loading
...Show More Authors

Buckling analysis of composite laminates for critical thermal (uniform and linear) and mechanical loads is reported here. The objective of this work is to carry out theoretical investigation of buckling analysis of composite plates under thermomechanical loads, and experimental investigation under mechanical loads. The analytical investigation involved certain mathematical preliminaries, a study of equations of orthotropic elasticity for classical laminated plate theory (CLPT), higher order shear deformation plate theory (HSDT) , and numerical analysis (Finite element method), then the equation of motion are derived and solved using Navier method and Levy method for symmetric and anti-symmetric cross-ply and angle-ply laminated plates t

... Show More
View Publication Preview PDF
Publication Date
Sat Dec 30 2017
Journal Name
Al-khwarizmi Engineering Journal
Buckling Analysis of Unidirectional Polymer Matrix Composite Plates
...Show More Authors

This study deals with the estimation of critical load of unidirectional polymer matrix composite plates by using experimental and finite element techniques at different fiber angles and fiber volume fraction of the composite plate.

            Buckling analysis illustrated that the critical load decreases in nonlinear relationship with the increase of the fiber angle and that it increases with the increase of the fiber volume fraction.

            The results show that the maximum value of the critical load is (629.54 N/m) at (q = 0°) and (Vf = 40 %) for the finite element method, while the minimum val

... Show More
View Publication Preview PDF
Publication Date
Wed Jul 31 2019
Journal Name
Journal Of Engineering
Buckling Analysis of Laminated Composite Plate with Different Boundary Conditions using modified Fourier series
...Show More Authors

Buckling analysis of a laminated composite thin plate with different boundary conditions subjected to in-plane uniform load are studied depending on classical laminated plate theory; analytically using (Rayleigh-Ritz method). Equation of motion of the plates was derived using the principle of virtual work and solved using modified Fourier displacement function that satisfies general edge conditions. The eigenvalue problem generated by using Ritz method, the set of linear algebraic equations can be solved using MATLAB for symmetric and anti-symmetric, cross and angle-ply laminated plate considering some design parameters such as aspect ratios, number of layers, lamination type and orthotropic ratio. The results obtained g

... Show More
View Publication Preview PDF
Crossref (3)
Crossref
Publication Date
Tue Jan 31 2017
Journal Name
Journal Of Engineering
Static Analysis of Laminated Composite Plate using New Higher Order Shear Deformation Plate Theory
...Show More Authors

 In the present work a theoretical analysis depending on the new higher order . element in shear deformation theory for simply supported cross-ply laminated plate is developed. The new displacement field of the middle surface expanded as a combination of exponential and trigonometric function of thickness coordinate with the transverse displacement taken to be constant through the thickness. The governing equations are derived using Hamilton’s principle and solved using Navier solution method to obtain the deflection and stresses under uniform sinusoidal load. The effect of many design parameters such as number of laminates, aspect ratio and thickness ratio on static behavior of the laminated composite plate has been studied. The

... Show More
View Publication Preview PDF
Publication Date
Sat Dec 01 2018
Journal Name
Al-khwarizmi Engineering Journal
Dynamic Analysis of Thin Composite Cylindrical and Spherical Shells
...Show More Authors

In this work, an investigation for the dynamic analysis of thin composite cylindrical and spherical shells is presented. The analytical solution is based upon the higher order shear deformation theory of elastic shells from which the developed equations are derived to deal with orthotropic layers. This will cover the determination of the fundamental natural frequencies and mode shapes for simply supported composites cylindrical and spherical shells.

      The analytical results obtained by using the derived equations were confirmed by the finite element technique using the well known Ansys package. The results have shown a good agreement with a maximum percentage of discrepancy, which gives a confidence o

... Show More
View Publication Preview PDF
Publication Date
Thu Nov 21 2019
Journal Name
Journal Of Engineering
Thermal Buckling of Angle-Ply Laminated Plates Using New Displacement Function
...Show More Authors

ABSTRACT

Critical buckling temperature of angle-ply laminated plate is developed using a higher-order displacement field. This displacement field used by Mantari et al based on a constant ‘‘m’’, which is determined to give results closest to the three dimensions elasticity (3-D) theory. Equations of motion based on higher-order theory angle ply plates are derived through Hamilton, s principle, and solved using Navier-type solution to obtain critical buckling temperature for simply supported laminated plates. Changing (α2/ α1) ratios, number of layers, aspect ratios, E1/E2 ratios for thick and thin plates and their effect on thermal

... Show More
View Publication Preview PDF
Crossref (3)
Crossref
Publication Date
Thu Sep 15 2022
Journal Name
Journal Of Mechanical Engineering
Thermal Buckling of Laminated Plates using Modified Mantari Function
...Show More Authors

Critical buckling temperature of laminated plate under thermal load varied linearly along the thickness, is developed using a higher-order shape function which depends on a parameter ‘‘m’’, which is improved to obtain results for thin and thick plates. Laminated plates’ equations of motion are obtained using virtual work principle and solved for simply supported boundary conditions. Angle and cross laminates thermal buckled mode shapes with different E1/E2 proportion, number of plies, (α2/α1) proportion, aspect ratios, are investigated. It is observed that this shape function gives thermal buckling for thin and thick plates but with m = 0.05 that agree well with other theories and linear distribution of temperature giv

... Show More