Several industrial wastewater streams may contain heavy metal ions, which must be effectively removal
before the discharge or reuse of treated waters could take place. In this paper, the removal of copper( II)
by foam flotation from dilute aqueous solutions was investigated at laboratory scale. The effects of
various parameters such as pH, collector and frother concentrations, initial copper concentration, air flow
rate, hole diameter of the gas distributor, and NaCl addition were tested in a bubble column of 6 cm inside
diameter and 120 cm height. Sodium dodecylsulfate (SDS) and Hexadecyl trimethyl ammonium bromide
(HTAB) were used as anionic and cationic surfactant, respectively. Ethanol was used as frothers and the
optimal removal conditions have been established. Successful removals about (98%) and (76%) could be
achieved for copper ions with SDS and HTAB, respectively. Copper removal reached about 80% under
the optimum conditions at low pH; at high pH it became as high as 98% probably due to the contribution
from the flotation of precipitated copper. It was found that the presence of NaCl in the solution reduced
the recoveries. Adding ethanol at 1% concentration increased the removal efficiency. From the results the
rate of flotation was found to be first order.
In the present work, a study is carried out to remove chromium (III) from aqueous solution by: activated charcoal, attapulgite and date palm leaflet powder (pinnae). The effect of various parameters such as contact time, and temperature has been studied. The isotherm equilibrium data were well fitted by Freundlich and Langmuir isotherm models. The adsorption capacity of chromium (III) that was observed by activated charcoal, attapulgite and date palm leaflet powder (pinnae) increased with the rise of temperature when the concentrations of Cr (III) were 600, 700 and 100mg/L respectively. The greatest adsorption capacity ofactivated charcoal, attapulgite and date palm leaflet powder (pinnae) at 10°C was 7.51, 5.39 and 0.77mg.gˉ¹ respective
... Show MoreIn this study, manganese dioxide (MnO₂) nanoparticles (NPs) were synthesized via the hydrothermal method and utilized for the adsorption of Janus green dye (JG) from aqueous solutions. The effects of MnO₂ NPs on kinetics and diffusion were also analyzed. The synthesized NPs were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), energy-dispersive X-ray analysis (EDX), and Fourier-transform infrared spectroscopy (FT-IR), with XRD confirming the nanoparticle size of 6.23 nm. The adsorption kinetics were investigated using three models: pseudo-first-order (PFO), pseudo-second-order (PSO), and the intraparticle diffusion model. The PSO model provided the best fit (R² = 0.999), indicating that the adsorpti
... Show MoreWe aimed to obtain magnesium/iron (Mg/Fe)-layered double hydroxides (LDHs) nanoparticles-immobilized on waste foundry sand-a byproduct of the metal casting industry. XRD and FT-IR tests were applied to characterize the prepared sorbent. The results revealed that a new peak reflected LDHs nanoparticles. In addition, SEM-EDS mapping confirmed that the coating process was appropriate. Sorption tests for the interaction of this sorbent with an aqueous solution contaminated with Congo red dye revealed the efficacy of this material where the maximum adsorption capacity reached approximately 9127.08 mg/g. The pseudo-first-order and pseudo-second-order kinetic models helped to describe the sorption measure
Release of industrial effluents comprising dyes in water bodies is one of the foremost causes of water pollution. Therefore, the proper and proficient treatment of these dyes contaminated left-over material before their release is crucial. Herein, an eco-friendly biological macromolecule Gum-Acacia (GA) integrated Fe3O4 nanoparticles composite hydrogel was manufactured via co-precipitation technique for effective adsorption of Congo red (CR) dye existing in water bodies. The as-prepared magnetic GA/Fe3O4 composite hydrogel was characterized by FTIR, XRD, EDX, VSM, SEM, and BET techniques. These studies discovered the fruitful fabrication of biodegradable magnetic GA/Fe3O4 composite hydrogel possessing porous structure with large surface are
... Show MoreTo study the comparative use of some soil minerals (zeolite, bentonite, phosphate rock, and limestone) in the adsorption and release of lead and its removal rates from its aqueous solutions using adsorption equations. Two laboratory experiments were carried out for the adsorption and release of lead. The adsorption experiment took 0.5 g of some of the above soil minerals. Lead was added as Pb (NO3)2 at levels of 3.0, 2.0, 1.5, 1.0, 0.5, and 0.0 mmol L-1 containing a concentration of 0.01M of calcium chloride. The experimental unit’s number was 72, the concentration of dissolved lead in the equilibrium solution was estimated and the amount of lead adsorbed was calculated. As for the lead release experiment, samples fo
... Show MoreRate of zinc consumption during the cathodic protection of copper pipeline which carries saline water was measured by weight loss technique in the absence and presence of bacteria. Variables studied were solution flow rate, temperature, time and NaCl concentration. It was found that within the present range of variables; the rate of zinc consumption increases with the increase of all operating conditions. The presence of bacteria increases the zinc consumption. Fourth order multi-term model and one-term model were suggested to represent the consumption data. Nonlinear regression analysis was used to estimate the coefficients of these models, while statistical analysis was used to determine the effect of each coefficient. Both models were re
... Show More
