An experimental and theoretical analysis was conducted for simulation of open circuit cross flow heat
exchanger dynamics during flow reduction transient in their secondary loops. Finite difference
mathematical model was prepared to cover the heat transfer mechanism between the hot water in the
primary circuit and the cold water in the secondary circuit during transient course. This model takes under
consideration the effect of water heat up in the secondary circuit due to step reduction of its flow on the
physical and thermal properties linked to the parameters that are used for calculation of heat transfer
coefficients on both sides of their tubes. Computer program was prepared for calculation purposes which
cover all the variables that affect such type of transient mechanisms. The effect of the power density in
the primary circuit and the water flow reduction percentage on the average temperature build up of the
water in the primary circuit was investigated. The elapsed time required for the primary circuit average
temperature to reach a steady state value was also calculated. These calculations were supported with
experimental measurements conducted on a standard cross flow heat exchanger apparatus. The
experimental results were compared with the theoretical results for certain power density value at
different flow reduction percentages which show a reliable agreement. This relative agreement was
necessary to consider the mathematical model with certain assurance for calculating transient parameters
for higher power densities that are out of apparatus ranges. The results proved that water average
temperature build up in the primary circuit has sharp tendency when the percentage of flow reduction in
the secondary circuit reach 25% of its nominal values.
In this research, an experimental study was conducted to high light the impact of the exterior shape of a cylindrical body on the forced and free convection heat transfer coefficients when the body is hold in the entrance of an air duct. The impact of changing the body location within the air duct and the air speed are also demonstrated. The cylinders were manufactured with circular, triangular and square sections of copper for its high thermal conductivity with appropriate dimensions, while maintaining the surface area of all shapes to be the same. Each cylinder was heated to a certain temperature and put inside the duct at certain locations. The temperature of the cylinder was then monitored. The heat transfer coefficient were then cal
... Show MoreAn experimental study on a KIA pride (SAIPA 131) car model with scale of 1:14 in the wind tunnel was made beside the real car tests. Some of the modifications to passive flow control which are (vortex generator, spoiler and slice diffuser) were added to the car to reduce the drag force which its undesirable characteristic that increase fuel consumption and exhaust toxic gases. Two types of calculations were used to determine the drag force acting on the car body. Firstly, is by the integrating the values of pressure recorded along the pressure taps (for the wind tunnel and the real car testing), secondly, is by using one component balance device (wind tunnel testing) to measure the force. The results show that, the avera
... Show MoreThe present study explores numerically the energy storage and energy regeneration during Melting and Solidification processes in Phase Change Materials (PCM) used in Latent Heat Thermal Energy Storage (LHTES) systems. Transient two-dimensional (2-D) conduction heat transfer equations with phase change have been solved utilizing the Explicit Finite Difference Method (FDM) and Grid Generation technique. A Fortran computer program was built to solve the problem. The study included four different Paraffin's. The effects of container geometrical shape, which included cylindrical and square sections of the same volume and heat transfer area, the container volume or mass of PCM, variation of mass flow rate of heat transfer fluid (HTF), and temp
... Show MoreThe Jeribe reservoir in the Jambour Oil Field is a complex and heterogeneous carbonate reservoir characterized by a wide range of permeability variations. Due to limited availability of core plugs in most wells, it becomes crucial to establish correlations between cored wells and apply them to uncored wells for predicting permeability. In recent years, the Flow Zone Indicator (FZI) approach has gained significant applicability for predicting hydraulic flow units (HFUs) and identifying rock types within the reservoir units.
This paper aims to develop a permeability model based on the principles of the Flow Zone Indicator. Analysis of core permeability versus core porosity plot and Reservoir Quality Index (RQI) - Normalized por
... Show MoreOne wide-ranging category of open source data is that referring to geospatial information web sites. Despite the advantages of such open source data, including ease of access and cost free data, there is a potential issue of its quality. This article tests the horizontal positional accuracy and possible integration of four web-derived geospatial datasets: OpenStreetMap (OSM), Google Map, Google Earth and Wikimapia. The evaluation was achieved by combining the tested information with reference field survey data for fifty road intersections in Baghdad, Iraq. The results indicate that the free geospatial data can be used to enhance authoritative maps especially small scale maps.
The main purpose of this paper is to study feebly open and feebly closed mappings and we proved several results about that by using some concepts of topological feebly open and feebly closed sets , semi open (- closed ) set , gs-(sg-) closed set and composition of mappings.
Drag has long been identified as the main reason for the loss of energy in fluid transmission like pipelines and other similar transportation channels. The main contributor to this drag is the viscosity as well as friction against the pipe walls, which will results in more pumping power consumption.
The aim in this study was first to understand the role of additives in the viscosity reduction and secondly to evaluate the drag reduction efficiency when blending with different solvents.
This research investigated flow increase (%FI) in heavy oil at different flow rates (2 to 10 m3/hr) in two pipes (0.0381 m & 0.0508 m) ID By using different additives (toluene and naphtha) with different concent
... Show MoreThe risks are considered as a large challenge facing the human communities. This challenge creates an economic and social burden which obstruct the community progress and influences on its evaluation in a negative way. In the last years, these risks began to increase and now it is necessary to face these risks in a regular and instructive methods in order to control over these risks and to limit its effects and reducing the losses, if it happened. The loss reduction and prevention programs produced by risks management are considered as a successful solution which enable to control these risks. These programs would not finish the danger in the community in a final way but it produces a practical solution reduces the negative effects and c
... Show MoreABSTRACT: BACKGROUND: Breast reduction for mammary hypertrophy is a highly effective procedure with high degree of patient satisfaction. There are many methods of breast reduction which involve removal of excess tissue with reshaping of overlying skin while maintaining a viable nipple areolar complex. OBJECTIVE: The purpose of this study is to evaluate the use of the superomedial technique as an effective method for reduction mammoplasty. PATIENTS AND METHODS: A total of 30 patients underwent reduction mammoplasty by utilizing superomedial pedicle technique between 2010 and 2013. Those patients were evaluated postoperatively in terms of their aesthetic and functional satisfaction, viability of nipple – areolar complex and nipple sensory p
... Show More
