In this paper, an algorithm for reconstruction of a completely lost blocks using Modified
Hybrid Transform. The algorithms examined in this paper do not require a DC estimation
method or interpolation. The reconstruction achieved using matrix manipulation based on
Modified Hybrid transform. Also adopted in this paper smart matrix (Detection Matrix) to detect
the missing blocks for the purpose of rebuilding it. We further asses the performance of the
Modified Hybrid Transform in lost block reconstruction application. Also this paper discusses
the effect of using multiwavelet and 3D Radon in lost block reconstruction.
This study presents the findings of a 3D finite element modeling on the performance of a single pile under various slenderness ratios (25, 50, 75, 100). These percentages were assigned to cover the most commonly configuration used in such kind of piles. The effect of the soil condition (dry and saturated) on the pile response was also investigated. The pile was modeled as a linear elastic, the surrounded dry soil layers were simulated by adopting a modified Mohr-Coulomb model, and the saturated soil layers were simulated by the modified UBCSAND model. The soil-pile interaction was represented by interface elements with a reduction factor (R) of 0.6 in the loose sand layer and 0.7 in t
SIFCON is characterized as a construction material of high ductility and very high strength. It is suitable for concrete structures used for special applications. However, the density of SIFCON is much higher than that of Fiber Reinforced Concrete (FRC) due to the need for a large amount of high-density steel fibers. This work examines the split tensile behavior of modified weight slurry infiltrated fiber concrete utilizing a mixture of two types of fibers, steel fiber, and polyolefin fiber. For the investigation, 30 cylinders and 15 cubes were poured. The used volume fraction (V.F) is (6 %) and the use of five series once as each type separately and once a hybrid in proportions of 2/3 polyolefin with 1/3 steel fiber and
... Show MoreThis research deals with the qualitative and quantitative interpretation of Bouguer gravity anomaly data for a region located to the SW of Qa’im City within Anbar province by using 2D- mapping methods. The gravity residual field obtained graphically by subtracting the Regional Gravity values from the values of the total Bouguer anomaly. The residual gravity field processed in order to reduce noise by applying the gradient operator and 1st directional derivatives filtering. This was helpful in assigning the locations of sudden variation in Gravity values. Such variations may be produced by subsurface faults, fractures, cavities or subsurface facies lateral variations limits. A major fault was predicted to extend with the direction NE-
... Show MoreBreast cancer constitutes about one fourth of the registered cancer cases among the Iraqi population (1)
and it is the leading cause of death among Iraqi women (2)
. Each year more women are exposed to the vicious
ramifications of this disease which include death if left unmanaged or the negative sequels that they would
experience, cosmetically and psychologically, after exposure to radical mastectomy.
The World Health Organization (WHO) documented that early detection and screening, when coped
with adequate therapy, could offer a reduction in breast cancer mortality; displaying that the low survival rates
in less developed countries, including Iraq, is mainly attributed to the lack of early detection programs couple
Significant advances in the automated glaucoma detection techniques have been made through the employment of the Machine Learning (ML) and Deep Learning (DL) methods, an overview of which will be provided in this paper. What sets the current literature review apart is its exclusive focus on the aforementioned techniques for glaucoma detection using the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines for filtering the selected papers. To achieve this, an advanced search was conducted in the Scopus database, specifically looking for research papers published in 2023, with the keywords "glaucoma detection", "machine learning", and "deep learning". Among the multiple found papers, the ones focusing
... Show MoreUropathogenic specific protein is a genotoxic protein targeting the DNA, leading to mutations and modifications in the normal cell's DNA and subsequently, cancer development. This study aims to determine the prevalence of the usp gene in Uropathogenic Escherichia coli isolated from females with urinary tract infections and study its correlation with biofilm formation. One hundred and five urine specimens were collected from female patients (20 to 55 years old) with urinary tract infections attending hospitals. Traditional laboratory methods using selective and differential culture media were used for initial bacterial isolation and identification, and molecular techniques that targeted a segment of the 16SrRNA gene with a specific primer pa
... Show MoreA nonlinear filter for smoothing color and gray images
corrupted by Gaussian noise is presented in this paper. The proposed
filter designed to reduce the noise in the R,G, and B bands of the
color images and preserving the edges. This filter applied in order to
prepare images for further processing such as edge detection and
image segmentation.
The results of computer simulations show that the proposed
filter gave satisfactory results when compared with the results of
conventional filters such as Gaussian low pass filter and median filter
by using Cross Correlation Coefficient (ccc) criteria.
With the high usage of computers and networks in the current time, the amount of security threats is increased. The study of intrusion detection systems (IDS) has received much attention throughout the computer science field. The main objective of this study is to examine the existing literature on various approaches for Intrusion Detection. This paper presents an overview of different intrusion detection systems and a detailed analysis of multiple techniques for these systems, including their advantages and disadvantages. These techniques include artificial neural networks, bio-inspired computing, evolutionary techniques, machine learning, and pattern recognition.