Frequently, Load associated mode of failure (rutting and fatigue) as well as, occasionally, moisture damage in some sections poorly drained are the main failure types found in some of the newly constructed road within Baghdad as well as other cities in Iraq. The use of hydrated lime in pavement construction could be one of the possible steps taken in the direction of improving pavement performance and meeting the required standards. In this study, the mechanistic properties of asphalt concrete mixes modified with hydrated lime as a partial replacement of limestone dust mineral filler were evaluated. Seven replacement rates were used; 0,0.5, 1, 1.5, 2, 2.5 and 3 percent by weight of aggregate. Asphalt concrete mixes were prepared at their optimum asphalt content and then tested to evaluate their engineering properties which include moisture damage, resilient modulus, permanent deformation and fatigue characteristics. These properties have been evaluated using indirect tensile strength, uniaxial repeated loading and repeated flexural beam tests. Mixes modified with hydrated lime were found to have improved fatigue and permanent deformation characteristics, also showed lower moisture susceptibility and high resilient modulus. The use of 2 percent hydrated lime as a partial replacement of mineral filler has added to local knowledge the ability to produce more durable asphalt concrete mixtures with better serviceability.
This research describes a new model inspired by Mobilenetv2 that was trained on a very diverse dataset. The goal is to enable fire detection in open areas to replace physical sensor-based fire detectors and reduce false alarms of fires, to achieve the lowest losses in open areas via deep learning. A diverse fire dataset was created that combines images and videos from several sources. In addition, another self-made data set was taken from the farms of the holy shrine of Al-Hussainiya in the city of Karbala. After that, the model was trained with the collected dataset. The test accuracy of the fire dataset that was trained with the new model reached 98.87%.
This research deals with a shrinking method concernes with the principal components similar to that one which used in the multiple regression “Least Absolute Shrinkage and Selection: LASS”. The goal here is to make an uncorrelated linear combinations from only a subset of explanatory variables that may have a multicollinearity problem instead taking the whole number say, (K) of them. This shrinkage will force some coefficients to equal zero, after making some restriction on them by some "tuning parameter" say, (t) which balances the bias and variance amount from side, and doesn't exceed the acceptable percent explained variance of these components. This had been shown by MSE criterion in the regression case and the percent explained v
... Show MoreIn a connected graph , the distance function between each pair of two vertices from a set vertex is the shortest distance between them and the vertex degree denoted by is the number of edges which are incident to the vertex The Schultz and modified Schultz polynomials of are have defined as:
respectively, where the summations are taken over all unordered pairs of distinct vertices in and is the distance between and in The general forms of Schultz and modified Schultz polynomials shall be found and indices of the edge – identification chain and ring – square graphs in the present work.
The unstable and uncertain nature of natural rubber prices makes them highly volatile and prone to outliers, which can have a significant impact on both modeling and forecasting. To tackle this issue, the author recommends a hybrid model that combines the autoregressive (AR) and Generalized Autoregressive Conditional Heteroscedasticity (GARCH) models. The model utilizes the Huber weighting function to ensure the forecast value of rubber prices remains sustainable even in the presence of outliers. The study aims to develop a sustainable model and forecast daily prices for a 12-day period by analyzing 2683 daily price data from Standard Malaysian Rubber Grade 20 (SMR 20) in Malaysia. The analysis incorporates two dispersion measurements (I
... Show MoreSeveral previous investigations and studies utilized silica fume (SF) or (micro silica) particles as supplementary cementitious material added as a substitute to cement-based mortars and their effect on the overall properties, especially on physical properties, strength properties, and mechanical properties. This study investigated the impact of the inclusion of silica fume (SF) particles on the residual compressive strengths and microstructure properties of cement-based mortars exposed to severe conditions of elevated temperatures. The prepared specimens were tested and subjected to 25, 250, 450, 600, and 900 °C. Their residual compressive strengths and microstructure were evaluated and compared with control samples (C
... Show MoreThis research is devoted to investigate relationship between both Ultrasonic Pulse Velocity and Rebound Number (Hammer Test) with cube compressive strength and also to study the effect of steel reinforcement on these relationships.
A study was carried out on 32 scale model reinforced concrete elements. Non destructive testing campaign (mainly ultrasonic and rebound hammer tests) made on the same elements. About 72 concrete cubes (15 X 15 X15) were taken from the concrete mixes to check the compressive strength.. Data analyzed.Include the possible correlations between non destructive testing (NDT) and compressive strength (DT) Statistical approach is used for this purpose. A new relationships obtained from correlations results is give
The influence and hazard of fire flame are one of the most important parameters that affecting the durability and strength of structural members. This research studied the influence of fire flame on the behavior of reinforced concrete beams affected by repeated load. Nine self- compacted reinforced concrete beams were castellated, all have the same geometric layout (0.15x0.15x1.00) m, reinforcement details and compressive strength (50 Mpa). To estimate the effect of fire flame disaster, four temperatures were adopted (200, 300, 400 and 500) oC and two method of cooling were used (graduated and sudden). In the first cooling method, graduated, the tested beams were leaved to cool in air while in the second method, sudden, water splash was use
... Show MoreWhen the flange of a reinforced concrete spandrel beam is in tension, current design codes and specifications enable a portion of the bonded flexure tension reinforcement to be distributed over an effective flange width. The flexural behavior of the RC L-shaped spandrel beam when reinforcement is laterally displaced in the tension flange is investigated experimentally and numerically in this work. Numerical analysis utilizing the finite element method is performed on discretized flanged beam models validated using experimentally verified L-shaped beam specimens to achieve study objectives. A parametric study was carried out to evaluate the influence of various factors on the beam’s flexure behavior. Results showed that
... Show MorePortland cement concrete is the most commonly used construction material in the world for decades. However, the searches in concrete technology are remaining growing to meet particular properties related to its strength, durability, and sustainability issue. Thus, several types of concrete have been developed to enhance concrete performance. Most of the modern concrete types have to contain supplementary cementitious materials (SCMs) as a partial replacement of cement. These materials are either by-products of waste such as fly ash, slag, rice husk ash, and silica fume or from a geological resource like natural pozzolans and metakaolin (MK). Ideally, the utilization of SCMs will enhance the concrete performance, minimize
... Show More