The present work divided into two parts, first the experimental side which included the
measuring of the first natural frequency for the notched and unnotched cantilever composite beams
which consisted of four symmetrical layers and made of Kevlar- epoxy reinforced. A numerical
study covers the effect of notches on the natural frequencies of the same specimen used in the
experimental part. The mathematical model for the beam contains two open edges on the upper
surface. The effect of the location of cracks relative to the restricted end, depth of cracks, volume
fraction of fibers and orientation of the fiber on the natural frequencies are explored. The results
were calculated using the known engineering program (ANSYS), the results obtained has been
compared with those calculated analytically by (Sierakowski RL.), which have expressed the closest
well also the comparison between the experimental results with that calculated by (ANSYS) has
very well. The study shows that the highest difference in frequencies occur when the value of the
fiber orientation equal to 0odegree, the effect of location of the cracks decrease when the cracks
moving toward the free end and also shows that an increase of the depth of the cracks leads to a
decrease in the values of natural frequencies.
In this work, the effect of preparing a composite of copper oxide nanoparticles with carbon on some of its optical properties was studied. The composite preparing process was carried out by exploding graphite electrodes in an aqueous suspension of copper oxide. The properties of the plasma which is formed during the explosion were studied using emission spectroscopy in order to determine the most important elements that are present in the media. The electron’s density and their energy, which is the main factor in the composite process, were determined. The particle properties were studied before and after the exploding process. The XRD showed an additional peak in the copper oxides pattern corresponding to the hexagonal graphite struct
... Show MoreBackground: This study evaluated the influence of different fiber formulations incorporation in resin composite on cuspal deflection (CD) of endodontically-treated teeth with mesio-occluso-distal (MOD) cavities. Materials and Methods: Thirty-two freshly extracted maxillary premolar teeth received MOD cavity preparation followed by endodontic treatment using single cone obturation technique, and divided into: Group I: direct composite resin only using a centripetal technique, Group II: direct composite resin with short fiber-reinforced composite (everX Flow), Group III: direct composite resin with leno wave ultra-high molecular weight polyethylene (LWUHMWPE) fibers placed on the cavity floor, and Group IV: direct composite resin with LWUHMWP
... Show MoreIn this study, composite materials consisting of Activated Carbon (AC) and Zeolite were prepared for application in the removal of methylene blue and lead from an aqueous solution. The optimum synthesis method involves the use of metakaolinization and zeolitization, in the presence of activated carbon from kaolin, to form Zeolite. First, Kaolin was thermally activated into amorphous kaolin (metakaolinization); then the resultant metakaolin was attacked by alkaline, transforming it into crystalline zeolite (zeolitization). Using nitrogen adsorption and SEM techniques, the examination and characterization of composite materials confirmed the presence of a homogenous distribution of Zeolite throughout the activated carbon.
... Show MoreA novel concept of air heater using a heating element made from Aluminum metal porous disc surrounded by a DC resistive electrical heater inserted in the mid-plane of a copper tube of (52.8 mm) diameter and (480 mm) length is presented herein. Study of the developed heater is conducted; using different porous disc thicknesses of (20, 40, 60 mm), heater wall temperatures (106 °C and 119 °C), and flow rates rare varied from (100–300 L/min). Al-metal foam disc has been made using the metal powder technology. Different resistive electrical heaters according to the type of porous disc used have been manufactured. A 2-D computational model is developed, using continuity, momentum, and energy equations for turbulent forced flow in plain tube,
... Show MoreBackground: Dental erosion is a common oral condition which results due to consumption of high caloric and low pH acidic food such as carbonated drinks and fruit juices. It is expected that these food types can cause irreversible damage to dental hard tissues and early deterioration of the dental restorations. So, this study aimed to evaluate and compare the erosive potential effects of orange fruit juice and Miranda orange drink on the microhardness of an orthodontic composite material. Materials and methods: Thirty discs with a thickness of 2 mm and a diameter of 10 mm were prepared from orthodontic bonding composite. The prepared discs were equally divided into three groups (n=10). Microhardness analysis was carried out both prior to
... Show MoreTo enhance the structural performance of concrete-filled steel tube (CFST) columns, various strengthening techniques have been proposed, including the use of internal steel stiffeners, external wrapping with carbon fiber-reinforced polymer (CFRP) sheets, and embedded steel elements. However, the behavior of concrete-filled stainless-steel tube (CFSST) columns remains insufficiently explored. This study numerically investigates the axial performance of square CFSST columns internally strengthened with embedded I-section steel profiles under biaxial eccentric loading. Finite element (FE) simulations were conducted using ABAQUS v. 6.2, and the developed models were validated against experimental results from the literature. A comprehen
... Show MoreA hierarchically porous structured zeolite composite was synthesized from NaX zeolite supported on carbonaceous porous material produced by thermal treatment for plum stones which is an agro-waste. This kind of inorganic-organic composite has an improved performance because bulky molecules can easily access the micropores due to the short diffusion path to the active sites which means a higher diffusion rate. The composite was prepared using a green synthesis method, including an eco-friendly polymer to attach NaX zeolite on the carbon surface by phase inversion. The synthesized composite was characterized using X-ray diffraction spectrometry, Fourier transforms infrared spectroscopy, field emission scanning electron microscopy, energy d
... Show More