Asphalt pavement properties in Iraq are highly affected by elevated summer air temperatures. One of these properties is stiffness (resilient modulus). To explain the effect of air temperatures on stiffness of asphalt concrete, it is necessary to determine the distribution of temperatures through the pavement asphalt concrete layers. In this study, the distribution of pavement temperatures at three depths (2cm,7cm, 10cm) below the pavement surface is determined by using the temperature data logger instrument. A relationship for determining pavement temperature as related to depth and air temperature has been suggested. To achieve the objective of this thesis, the prepared specimens have been tested for indirect tension in accordance with ASTM D4123, using the pnuematic repeated load apparatus, in order to determine the values of resilient modulus at three different temperatures (10, 25, 40) °C. From results of testing, it is observed that the resilient modulus decreases with increase in test temperature by a rate of 8.78×10 Psi/C' for asphalt concrete wearing courses. An increase in optimum asphalt content by 0.1% (by weight of total mixture) causes a decrease in resilient modulus by 22% at a temperature of 40C". A statistical model for the prediction of resilient modulus has been developed depending on mixture variables of: asphalt content, asphalt hinder viscosity, surface area of combined aggregates, air voids of compacted mixture and test temperature.
In this study, the effects of different loading doses of cerium in the prepared NaY zeolite from Iraqi kaolin were investigated. Al-Duara refinery atmospheric residue fluid catalytic cracking was selected as palpation reaction for testing the catalytic activity of cerium loading NaY zeolite. The insertion of cerium in NaY zeolites has been synthesized by simple ion exchange methods. Three samples of modified zeolite Y have been obtained by replacing the sodium ions in the original sample with cerium and the weight percent added are 0.35, 0.64, and 1.06 respectively. The effects of cerium loading to zeolite Y in different weight percent on the cracking catalysts were studied by employing a laboratory fluidized
... Show MoreThe enrollment of students in the university represents a new stage in their life that differ from the previous educational stages that student has previously established. It should be noted that students with special needs at the University of Baghdad are not large numbers. It appears that these students have an excel role in their colleges most often, That is, the handicap was not a barrier to their scientific progress, but rather an incentive for them to excel. The most important conclusion reached by the researcher is that the University of Baghdad had no role in caring for people with special needs and caring for them financially, socially, psychologically, healthily and economically, they need to pay attention to them and take care
... Show MoreIn the present work effect of recycled heating and cooling on the values of concrete compressive strength due to high temperature of 4000C was studied.
The tests show that the percent of reduction in compressive strength of the samples which exposed to a temperature of 4000C for one cycle was 32.5%, while the reduction was 52.7% for the samples which were exposed to recycled heating and cooling of ten times .
Moreover a study of the effect of specimen sizes on the percentages of compressive strength reduction due to high temperature
... Show MoreA single-crystalline semi-polar gallium nitride (11-22) was grown on m-plane (10-10) sapphire substrate by metal organic chemical vapor deposition. Three-step approach was introduced to investigate the grain size evolution for semi-polar (11-22) GaN. Such approach was achieved due to the optimized gallium to ammonia ratio and temperature variations, which led to high quality (11-22) oriented gallium nitride epilayers. The full width at half maximum values along (-1-123) and (1-100) planes for the overgrowth temperature of 1080°C were found to be as low as 0.37° and 0.49°, respectively. This was an indication of the enhanced coalescence and reduction in root mean square roughness as seen by atomic force microscopy. Surface analysi
... Show MoreIn this study two types of extraction solvents were used to extract the undesirable polyaromatics, the first solvent was furfural which was used today in the Iraqi refineries and the second was NMP (N-methyl-2-pyrrolidone).
The studied effecting variables of extraction are extraction temperature ranged from 70 to 110°C and solvent to oil ratio in the range from 1:1 to 4:1.
The results of this investigation show that the viscosity index of mixed-medium lubricating oil fraction increases with increasing extraction temperature and reaches 107.82 for NMP extraction at extraction temperature 110°C and solvent to oil ratio 4:1, while the viscosity index reaches to 101 for furfural extraction at the same extraction temperature and same
Three-dimensional nonlinear thermal numerical simulations are conducted for the friction stir welding (FSW) of AA 7020-T53. Three welding cases with tool (rotational and travel) speeds of 900rpm-40mm/min, 1400rpm-16mm/min and 1400rpm-40mm/in are analyzed. The objective is to study the variation of transient temperature in a friction stir welded plate of 5mm workpiece thickness. Based on the experimental records of transient temperature at several specific locations during the friction stir welding process for the AA 7020-T53, thermal numerical simulation is developed. The numerical results show that the temperature field in the FSW process is symmetrically distributed with respect to the welding line, increasing travel speed decreasing tran
... Show MoreThe study is about Maxwell , three dimensions of non – Newtonian fluid. Method of th Homotopy applied to analysis mass transfer and heat with thermophoresis effects. (Sc), Impact of therrmophoretic (𝜏), magnetic (M), Biot (γ), radiation (Rd),Schmidt Prandtle (Pr) parameters and ratio parameter(β) on concentration, temperature are offered in the paper.
This work predicts the effect of thermal load distribution in polymer melt inside a mold and a die during injection and extrusion processes respectively on the structure properties of final product. Transient thermal and structure models of solidification process for polycarbonate polymer melt in a steel mold and die are studied in this research. Thermal solution obtained according to solidify the melt from 300 to 30Cand Biot number of 16 and 112 respectively for the mold and from 300 to 30 Cand Biot number of 16 for die. Thermal conductivity, and shear and Young Modulus of polycarbonate are temperature depending. Bonded contact between the polycarbonate and the steel surfaces is suggested to transfer the thermal load. The temperat
... Show MoreA field experiment was implemented during during of crop year 2023-2024 at the Agricultural Engineering Research Station of the University of Baghdad to evaluate the influence of row orientation and planting density on certain growth traits, grain yield, and quality indices of bread wheat cultivars. The experiment was designed as a split-plot arrangement within a randomized complete block design (RCBD) with three replications. The main plots included three wheat cultivars (Iba’a-99, Buhooth-22, and Buhooth-10), while the subplots consisted of three planting densities (80, 100, and 120 kg ha−1), and the sub-sub plots were assigned to two row orientations: East-