Preferred Language
Articles
/
joe-3011
MECHANICAL DEGRADATION OF HIGH MOLECULAR WEIGHT POLYMER WITH SURFACTANT ADDITION IN A ROTATING DISK APPARATUS
...Show More Authors

Mechanical degradation hampers the practical usage of polymers for turbulent drag reduction
application. Mechanical degradation refers to the chemical process in which the activation energy of
polymer chain scission is exceeded by mechanical action on the polymer chain, and bond rupture
occurs. When a water-soluble polymer and surfactant are mixed in water solution, the specific structures
(aggregates) are formed, in which polymer film is formed around micelle. In this work, Xanthan gum (XG) –
Sodium lauryl ether sulfate (SELS) complex formation and its effect on percentage viscosity reduction
(%VR) was studied. It was found that SELS surfactant reduced the mechanical degradation of XG much
more efficiently than this polymer alone. Xanthan Gum (XG) has been tested for its shear stability and
degradability. 0.5% and 1.0 % by weight concentration solutions were exposed to shear stirring at different
speeds and time; also 0.5% through 1.5% by weight concentration solutions of SELS were added to XG
solutions to determine the ability of SELS to reduce the mechanical degradation of XG. It has been noticed
by measuring the percentage viscosity reduction (%VR) of the mixture of XG-SELS that the % VR
decreases when added this surfactant to XG polymer

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sun Feb 03 2019
Journal Name
Iraqi Journal Of Physics
Study of weathering effect on the thermal conductivity of polyvinyl chloride before and after silicon carbide addition as packaging materials
...Show More Authors

The work was carried out in two stages. The first stage concerned
with study of silicon carbide (SiC) ratio (1.5, 2.5, 3.5, and 4.5 wt%)
effect on the Thermal conductivity of polyvinyl chloride (PVC); and
the second stage concerned with the UV – weatherizing (25, 50, and
75 hr), thermal aging (40, 50, and 60 °C), and rain- weatherizing (1,
2.5, and 4 hr) effect on the samples involved. Thermal conductivity
results proved that there was slight increase in thermal conductivity
by (SiC) loading; it increased from 0.17 W/m.K for PVC to 0.19
W/m.K for 4.5% SiC/PVC; where as it was systematically decreased
by UV- weatherizing, thermal aging, and rain- weatherizing. This
property is in a good agreement with gene

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed May 01 2019
Journal Name
Solid State Phenomena
Preparation and Study of the Mechanical Properties of Unsaturated Polyester Resin/Graphene Nanocomposite
...Show More Authors

Nanocomposite was prepared using unsaturated polyester (UP) resin as a matrix and graphene nanoparticles as a reinforcement material in six percentage weights (0, 0.1, 0.2, 0.3, 1 and 1.5%). Mechanical, calorimetric and thermal studies were performed on the (UP) resin/graphene nanocomposite. All tests showed a clear improvement of all mechanical properties examined (hardness, flexural strength (F.S), impact strength (I.S) and tensile strength (T.S)) with increasing graphene percentage. In addition, the temperature of glass transition and thermal conductivity of this composite increased with increasing graphene content.

View Publication
Scopus (5)
Crossref (4)
Scopus Crossref
Publication Date
Mon Dec 11 2017
Journal Name
Al-khwarizmi Engineering Journal
Improvement of Mechanical and Rheological Properties of Natural Rubber for Anti-Vibration Applications
...Show More Authors

Abstract  

This research aims to study and improve the passivating specifications of rubber resistant to  vibration. In this paper, seven different rubber recipes were prepared based on mixtures of natural rubber(NR)  as an essential part in addition to the synthetic rubber (IIR, BRcis, SBR, CR)with different rates. Mechanical tests such as tensile strength, hardness, friction, resistance to compression, fatigue and creep testing in addition to the rheological test were performed. Furthermore, scanning electron microscopy (SEM)test was used to examine the structure morphology of rubber. After studying and analyzing the results, we found that, recipe containing (BRcis) of 40% from th

... Show More
View Publication Preview PDF
Crossref
Publication Date
Mon Oct 01 2012
Journal Name
Iraqi Journal Of Physics
Comparison study of some mechanical properties of micro and nano silica EP composites
...Show More Authors

The effect of micro-and nano silica particles (silica SiO2 (100 μm), Fused silica (12nm)) on some mechanical properties of epoxy resin was investigated (Young's modulus, Flexural strength). The micro-and nano composites were prepared by using three steps process with different volume fraction of micro-and nano particles (1, 2, 3, 4, 5, 7, 10, 15, and 20 vol. %). Flexural strength and Young's modulus of nano composites were increased at low volume fraction (max. enhancement at 4 vol.% ). However at higher volume fraction both Young's modulus and flexural strength decrease. Moreover, above, the mechanical properties are enhanced more than that of neat epoxy resin. The flexural strength decreases with increasing the volume fraction of micr

... Show More
View Publication Preview PDF
Publication Date
Tue Jan 01 2019
Journal Name
Technologies And Materials For Renewable Energy, Environment And Sustainability: Tmrees19gr
Improvement of some mechanical properties of epoxy using uncarbonized and carbonized eggshell powder
...Show More Authors

View Publication
Scopus (8)
Crossref (6)
Scopus Clarivate Crossref
Publication Date
Sun May 12 2019
Journal Name
Al-khwarizmi Engineering Journal
Effect of Quenching Media Variations on the Mechanical Behavior of Martensitic Stainless Steel
...Show More Authors

The purpose of this study is designate quenching and tempering heat treatment by using Taguchi technique to determine optimal factors of heat treatment (austenitizing temperature, percentage of nanoparticles, type of base media, nanoparticles type and soaking time) for increasing hardness, wear rate and impact energy properties of 420 martensitic stainless steel. An (L18) orthogonal array was chosen for the design of experiment. The optimum process parameters were determined by using signal-to-noise ratio (larger is better) criterion for hardness and impact energy while (Smaller is better) criterion was for the wear rate. The importance levels of process parameters that effect on hardness, wear rate and impact energy propertie

... Show More
View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Tue Feb 12 2019
Journal Name
Iraqi Journal Of Physics
Effect of industrial powder on mechanical properties of glass fiber reinforced epoxy composite
...Show More Authors

In the present study, composites were prepared by Hand lay-up molding and investigated. The composites constituents were epoxy resin as the matrix, 6% volume fractions of Glass Fibers (G.F) as reinforcement and 3%, 6% of industrial powder (Calcium Carbonate CaCO3, Potassium Carbonate K2CO3 and Sodium Carbonate Na2CO3) as filler. Density, water absorption, hardness test, flexural strength, shear stress measurements and tests were conducted to reveal their values for each type of composite material. The results showed that the non – reinforced epoxy have lower properties than composites material. Measured density results had show an incremental increase with volume fraction increase

... Show More
View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Mon Dec 02 2024
Journal Name
Engineering, Technology & Applied Science Research
Effect of Elevated Temperature on Microstructure and Mechanical Properties of Hot-Rolled Steel
...Show More Authors

The mechanical properties and microstructure of hot-rolled steel are critical in determining its performance in industrial applications, particularly when exposed to elevated temperatures. This study examines the effects of varying temperatures and soaking times on these properties through a series of controlled experiments. The primary objective was to optimize the key response parameters, including tensile strength, yield strength, and elongation, by analyzing the influence of temperature and time. A full factorial design approach was used, applying the desirability function theory to explore all possible combinations and identify optimal processing conditions. The experimental results showed that the soaking time played a critica

... Show More
View Publication
Scopus (5)
Crossref (4)
Scopus Crossref
Publication Date
Wed Apr 06 2022
Journal Name
Journal Of Accounting And Financial Studies ( Jafs )
Management using the Six Sigma approach to cost rationalization of activities : Application in the Iraqi mechanical carpet factory
...Show More Authors

The textile industries play a prominent role in reviving the national economy, but they are currently suffering from several problems, including the high costs of their activities, the low quality of their production processes, and accordingly, the hexagonal diffraction approach came to help analyze production activities to determine which of them are the most expensive and do not have a benefit or cost greater than Its benefit as a result of waste and losses that accompany its implementation. And by applying to the Iraqi mechanical carpet factory, the research reached several conclusions, the most important of which is the presence of several sources of waste and loss, such as activities and operations that do not add value, whi

... Show More
View Publication Preview PDF
Publication Date
Fri Oct 01 2010
Journal Name
Radiation Effects And Defects In Solids
An automated autocorrelator for the measurement of high-frequency femtosecond pulses
...Show More Authors

View Publication
Scopus Clarivate Crossref