Experiments have been conducted to study the local and average heat transfer by mixed
convection for hydrodynamically fully developed, thermally developing and fully developed
laminar upward air flow in an inclined annulus with adiabatic inner cast iron tube and uniform
heated outer aluminum tube with an aspect ratio ( Ω = 0.72) and (L/Dh≈40) for both calming and
test sections). A wide range of Reynolds number from 859 to 2024 has been covered, and heat
flux has been varied from 159 W/m2 to 812 W/m2 (these values of heat flux and Reynolds
number gave Richardson number range from 0.03 to 0.٣٨), with angles of annulus inclination
φ =0o (horizontal position), φ =60o (inclined position), and φ =90o (vertical position). The hydrodynamically fully developed condition has been achieved by using aluminum annulus
(calming section) has the same dimensions as test section and has connected with it by Teflon
piece. The average Nusselt numbers have been correlated with the product of (Richardson
number and Reynolds number) and compared with available literature and showed satisfactory
agreement. The temperature and local Nusselt number profiles results have revealed that the
secondary flows created by natural convection have a significant effect on the heat transfer
process.
Utilizing phase change materials in thermal energy storage systems is commonly considered as an alternative solution for the effective use of energy. This study presents numerical simulations of the charging process for a multitube latent heat thermal energy storage system. A thermal energy storage model, consisting of five tubes of heat transfer fluids, was investigated using Rubitherm phase change material (RT35) as the. The locations of the tubes were optimized by applying the Taguchi method. The thermal behavior of the unit was evaluated by considering the liquid fraction graphs, streamlines, and isotherm contours. The numerical model was first verified compared with existed experimental data from the literature. The outcomes re
... Show MoreA numerical simulation is made on the thermal lensing effect in an laser diode end-pumped Nd:YAG laser rod. Based on finite element method (FEM), the laser rod temperature distribution is calculated and the focal length is deduced for a Gaussian and super-Gaussian pump beam profiles.
At the pump power of 20W, the highest temperature located at the center of end-pumped face was 345K, and the thermal lens focal length was 81.4mm along the x-z axis.
The results indicate that the thermal lensing effect sensitively depend on the pump power, waist radius of the pump beam and the pump distribution in a laser rod geometry.
Background: One of the drawbacks of vital teeth bleaching is color stability. The aim of the present study was to evaluate the effects of tea and tomato sauce on the color stability of bleached enamel in association with the application of MI Paste Plus (CPP-ACPF). Materials and Methods: Sixty enamel samples were bleached with 10% carbamide peroxide for two weeks then divided into three groups (A, B and C) of 20 samples each. After bleaching, the samples of each group were subdivided into two subgroups (n=10). While subgroups A1, B1 and C1 were kept in distilled water, A2, B2, and C2 were treated with MI Paste Plus. Then, the samples were immersed in different solutions as follow: A1 and A2 in distilled water (control); B1 and B2 in black
... Show MoreThe field efficacy of Actellic (organophosphate), Neporex (insect growth regulator) and
Ficam (carbamate), at the application rates of 2-4, 0.4-0.8 and 0.1-0.2 g AI/m2 respectively,
was studied against the larvae of Musca domestica L. Results of treatments involving horse
manure indicated that Actellic and Neporex produced sharp decrease of larval numbers (close
to zero) for 21d. But there was a slight recovery in larval numbers 14 d following treatment
with Ficam. The populations of predator mites were not affected due to insecticidal
applications.
The current study aimed to use some bacterial isolates from the local soil of Baghdad city by study the effects of temperature, pH and incubation period on the growth rates of isolated bacteria and choose the optimal conditions for their diversity and for understanding bacterial growth and their requirements for survival and proliferation. This information can be applied to obtain their high growth rate for use in various fields such as agriculture, medicine and environmental sciences in the future. And it used to assess the degree of variation in across bacteria species in pH, temperature and incubation period. A number of local bacterial isolates as
Alkaloids are regarded as important nitrogen-containing chemical compounds that serve as a rich source for discovering and developing new drugs where most plant-origin alkaloids have antiproliferation effects on different kinds of cancers. Alkaloids’ continence of Calotropis procera leaves are detected by two biochemical alkaloid reagents. Also GC-MS analysis for leaf alkaloid extract was done that showed the existence of one type of alkaloid compound at retention time12.8min detected as colchicine (C22H25N06( by comparing it with colchicine standard reference (Sigma Aldrich) with M.wt 399g/mol and percentage area 7.1%. Furthermore, identification, separation, and purification
... Show MoreThe current research illustrates experimentally the effect of series and parallel connection (Z-I Configurations) of flat plate water solar collectors array on the thermal performance of closed loop solar heating system. The study includes the effect of changing the water flow rate on the thermal efficiency. The results show that, the collector's efficiency in series connection is higher than the parallel connection within flow rate level less than (100) ℓ/hr. Moreover, the collector efficiency in parallel connection of (I-Configurations) is more than the (Z- Configurations) with increasing the water flow rate .The maximum daily efficiency for parallel (I-Configurations) and (Z- Configurations) are (55%) and (51%) at w
... Show MoreA design for a photovoltaic-thermal (PVT) assembly with a water-cooled heat sink was planned, constructed, and experimentally evaluated in the climatic conditions of the southern region of Iraq during the summertime. The water-cooled heat sink was applied to thermally manage the PV cells, in order to boost the electrical output of the PVT system. A set of temperature sensors was installed to monitor the water intake, exit, and cell temperatures. The climatic parameters including the wind velocity, atmospheric pressure, and solar irradiation were also monitored on a daily basis. The effects of solar irradiation on the average PV temperature, electrical power, and overall electrical-thermal efficiency were investigated. The findings i
... Show More