The aim of this research work is to study the effect of stabilizing gypseous soil, which covers
vast areas in the middle, west and south parts of Iraq, using liquid asphalt on its strength properties
to be used as a base course layer replacing the traditional materials of coarse aggregate and broken
stones which are scarce at economical prices and hauling distances.
Gypseous soil brought from Al-Ramadi City, west of Iraq, with gypsum content of 66.65%,
medium curing cutback asphalt (MC-30), and hydrated lime are used in this study.
The conducted tests on untreated and treated gypseous soil with different percentages of medium
curing cutback asphalt (MC-30), water, and lime were: unconfined compression strength, and one
dimensional confined compression under both dry and absorbed test conditions.
The test results showed that stabilizing gypseous soil using the optimum fluid content of 16% (5%
cutback asphalt+11% water) have improved the unconfined compressive strength, compressibility,
rebound consolidation, and waterproofing of gypseous soil, but under absorbed condition the
stabilized gypseous soil using cutback asphalt only did not satisfy the requirements for base course
construction, therefore it was decided to use lime additive to improve the properties of soil-cutback
mixture under absorbed condition.
In this research, the preparation of bidentate Schiff base was carried out via the condensation reaction of both the salicylaldehyde with 1-phenyl-2,3-dimethyl-4-amino-5-oxo-pyrazole to form the ligand (L). The mentioned ligand was used to prepare complexes with transition metal ions Mn(II), Co(II), Ni(II), Cu(II) and Zn(II). The resulting complexes were separated and characterized by FTIR and UV-Vis spectroscopic technique. Elemental analysis for Carbon, Hydrogen and Nitrogen elements, electronic spectra of the ligand and complexes were obtained, and the magnetic susceptibility tests were also achieved to measure the dipole moments. The molar conductivities were also measured and determination of chlorine content in the complexes and
... Show MoreA modified water injection technique has organized by this study to improve oil recovery of the Mishrif reservoirs using polymerized alkaline surfactant water (PAS-Water) injection. It is planned to modify the existing water injection technology, first to control and balance the hazardous troublemaker reservoir facies of fifty-micron pore sizes with over 500 millidarcies permeability, along with the non-troublemaker types of less than twenty micron pore sizes with 45 to 100 millidarcies permeability. Second to control Mishrif reservoirs rock-wettability. Special core analysis under reservoir conditions of 2250 psi and 90 °C has carried out on tens of standard core plugs with heterogeneous buildup, using the proposed renewal water f
... Show MoreSince the Internet has been more widely used and more people have access to multimedia content, copyright hacking, and piracy have risen. By the use of watermarking techniques, security, asset protection, and authentication have all been made possible. In this paper, a comparison between fragile and robust watermarking techniques has been presented to benefit them in recent studies to increase the level of security of critical media. A new technique has been suggested when adding an embedded value (129) to each pixel of the cover image and representing it as a key to thwart the attacker, increase security, rise imperceptibility, and make the system faster in detecting the tamper from unauthorized users. Using the two watermarking ty
... Show Morenew Schiff base 4-chlorophenyl)methanimine (6R,7R)-3-methyl-8-oxo-7-(2-phenylpropanamido)-5-thia-1-azabicyclo[4.2.0]oct-2-ene-2-carboxylate= (HL)= C23H20 ClN3O4S) has been synthesized from β-lactam antibiotic (cephalexin mono hydrate(CephH)=(C16H19N3O5S.H2O) and 4-chlorobenzaldehyde . Figure(1) Metal mixed ligand complexes of the Schiff base were prepared from chloride salt of Fe(II),Co(II),Ni(II),Cu(II),Zn(II) and Cd (II), in 50% (v/v) ethanol –water medium (SacH ) .in aqueous ethanol(1:1) containing and Saccharin(C7H5NO3S) = sodium hydroxide. Several physical tools in particular; IR, CHN, 1H NMR, 13C NMR for ligand and melting point molar conductance, magnetic moment. and determination the percentage of the metal in the complexes by fl
... Show More
A new Schiff base (4-chlorophenyl)(phenyl methanimine (6R,7R)-3-methyl-8-oxo-7-(2-phenylpropanamido)-5-thia-1-azabicyclo[4.2.0]oct-2-ene-2-carboxylate=HL=C29H24ClN3O4S) has been synthesized from β-lactam antibiotic (cephalexin mono hydrate (CephH)=(C16H19N3O5S.H2O) and 4- chlorobenzophenone. Metal mixed ligand complexes of the Schiff base were prepared from chloride salt of Fe(II), Co(II), Ni(II), Cu(II), Zn(II) and Cd(II), in 50% (v/v) ethanol – water medium in aqueous ethanol(1:1) and Saccharin(C7H5NO3S) containing sodium hydroxide. Several physical tools in particular; IR, C:H:N , 1H NMR,13C NMR for ligand, melting point, molar conductance, magnetic moment. and determination of the percentage of the metal in the complexes by flame(AAS
... Show More